Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300961028> ?p ?o ?g. }
- W4300961028 endingPage "97" @default.
- W4300961028 startingPage "97" @default.
- W4300961028 abstract "We use machine learning techniques to classify galaxy merger stages, which can unveil physical processes that drive the star formation and active galactic nucleus (AGN) activities during galaxy interaction. The sample contains 4,690 galaxies from the integral field spectroscopy survey SDSS-IV MaNGA, and can be separated to 1,060 merging galaxies and 3630 non-merging or unclassified galaxies. For the merger sample, there are 468, 125, 293, and 174 galaxies in (1) incoming pair phase, (2) first pericentric passage phase, (3) aproaching or just passing the apocenter, and (4) final coalescence phase or post-mergers. With the information of projected separation, line-of-sight velocity difference, SDSS gri images, and MaNGA Ha velocity map, we are able to classify the mergers and their stages with good precision, which is the most important score to identify interacting galaxies. For the 2-phase classification (binary; non-merger and merger), the performance can be high (precision>0.90) with LGBMClassifier. We find that sample size can be increased by rotation, so the 5-phase classification (non-merger, 1, 2, 3, and 4 merger stages) can be also good (precision>0.85). The most important features come from SDSS gri images. The contribution from MaNGA Ha velocity map, projected separation, and line-of-sight velocity difference can further improve the performance by 0-20%. In other words, the image and the velocity information are sufficient to capture important features of galaxy interactions, and our results can apply to the entire MaNGA data as well as future all-sky surveys." @default.
- W4300961028 created "2022-10-04" @default.
- W4300961028 creator A5006109885 @default.
- W4300961028 creator A5015538795 @default.
- W4300961028 creator A5018737815 @default.
- W4300961028 creator A5063568570 @default.
- W4300961028 creator A5064420076 @default.
- W4300961028 creator A5067640055 @default.
- W4300961028 creator A5085960468 @default.
- W4300961028 date "2022-10-01" @default.
- W4300961028 modified "2023-10-14" @default.
- W4300961028 title "SDSS-IV MaNGA: Unveiling Galaxy Interaction by Merger Stages with Machine Learning" @default.
- W4300961028 cites W1658947143 @default.
- W4300961028 cites W1964055719 @default.
- W4300961028 cites W1973637537 @default.
- W4300961028 cites W1982717117 @default.
- W4300961028 cites W1983578725 @default.
- W4300961028 cites W1999367759 @default.
- W4300961028 cites W2009721953 @default.
- W4300961028 cites W2019016642 @default.
- W4300961028 cites W2019562528 @default.
- W4300961028 cites W2024319723 @default.
- W4300961028 cites W2024897607 @default.
- W4300961028 cites W2032988955 @default.
- W4300961028 cites W2035052071 @default.
- W4300961028 cites W2036384042 @default.
- W4300961028 cites W2058379217 @default.
- W4300961028 cites W2063568047 @default.
- W4300961028 cites W2070586388 @default.
- W4300961028 cites W2074106980 @default.
- W4300961028 cites W2087859919 @default.
- W4300961028 cites W2090482424 @default.
- W4300961028 cites W2094246362 @default.
- W4300961028 cites W2095917766 @default.
- W4300961028 cites W2098564368 @default.
- W4300961028 cites W2101100379 @default.
- W4300961028 cites W2112193291 @default.
- W4300961028 cites W2113746205 @default.
- W4300961028 cites W2114348703 @default.
- W4300961028 cites W2119131940 @default.
- W4300961028 cites W2142882733 @default.
- W4300961028 cites W2149653371 @default.
- W4300961028 cites W2161190330 @default.
- W4300961028 cites W2206814030 @default.
- W4300961028 cites W2207069478 @default.
- W4300961028 cites W2593224863 @default.
- W4300961028 cites W2609792082 @default.
- W4300961028 cites W2623459029 @default.
- W4300961028 cites W2767950361 @default.
- W4300961028 cites W2768455873 @default.
- W4300961028 cites W2804191040 @default.
- W4300961028 cites W2892039870 @default.
- W4300961028 cites W2895027382 @default.
- W4300961028 cites W2902203455 @default.
- W4300961028 cites W2904968505 @default.
- W4300961028 cites W2918807486 @default.
- W4300961028 cites W2942811393 @default.
- W4300961028 cites W2949884473 @default.
- W4300961028 cites W2951900035 @default.
- W4300961028 cites W2968961343 @default.
- W4300961028 cites W2971975864 @default.
- W4300961028 cites W2980735226 @default.
- W4300961028 cites W3098220822 @default.
- W4300961028 cites W3098459515 @default.
- W4300961028 cites W3098741510 @default.
- W4300961028 cites W3098975407 @default.
- W4300961028 cites W3099438994 @default.
- W4300961028 cites W3099532125 @default.
- W4300961028 cites W3099747032 @default.
- W4300961028 cites W3100024326 @default.
- W4300961028 cites W3100032906 @default.
- W4300961028 cites W3100901804 @default.
- W4300961028 cites W3101285323 @default.
- W4300961028 cites W3101940590 @default.
- W4300961028 cites W3102502249 @default.
- W4300961028 cites W3102936492 @default.
- W4300961028 cites W3103128217 @default.
- W4300961028 cites W3103247671 @default.
- W4300961028 cites W3103899138 @default.
- W4300961028 cites W3104911066 @default.
- W4300961028 cites W3105161400 @default.
- W4300961028 cites W3105205770 @default.
- W4300961028 cites W3105597481 @default.
- W4300961028 cites W3106456019 @default.
- W4300961028 cites W3121912651 @default.
- W4300961028 cites W3124057309 @default.
- W4300961028 cites W3125487458 @default.
- W4300961028 cites W3125793999 @default.
- W4300961028 cites W3135144757 @default.
- W4300961028 cites W3136484741 @default.
- W4300961028 cites W3158023250 @default.
- W4300961028 cites W3207746965 @default.
- W4300961028 cites W4206442464 @default.
- W4300961028 cites W4281295426 @default.
- W4300961028 cites W4281647506 @default.
- W4300961028 cites W4283030915 @default.
- W4300961028 doi "https://doi.org/10.3847/1538-4357/ac8c27" @default.
- W4300961028 hasPublicationYear "2022" @default.