Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300961058> ?p ?o ?g. }
- W4300961058 abstract "Glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) are common in elderly yet difficult to differentiate on MRI. Their management and prognosis are quite different. Recent surge of interest in predictive analytics, using machine learning (ML) from radiomic features and deep learning (DL) for diagnosing, predicting response and prognosticating disease has evinced interest among radiologists and clinicians. The objective of this systematic review and meta-analysis was to evaluate the deep learning & ML algorithms in classifying PCNSL from GBM.The authors performed a systematic review of the literature from MEDLINE, EMBASE and the Cochrane central trials register for the search strategy in accordance with PRISMA guidelines to select and evaluate studies that included themes of ML, DL, AI, GBM, PCNSL. All studies reporting on ML algorithms or DL that for differentiating PCNSL from GBM on MR imaging were included. These studies were further narrowed down to focus on works published between 2018 and 2021. Two researchers independently conducted the literature screening, database extraction and risk bias assessment. The extracted data was synthesised and analysed by forest plots. Outcomes assessed were test characteristics such as accuracy, sensitivity, specificity and balanced accuracy.Ten articles meeting the eligibility criteria were identified addressing use of ML and DL in training and validation classifiers to distinguish PCNSL from GBM on MR imaging. The total sample size was 1311 in the included studies. ML approach was used in 6 studies while DL in 4 studies. The lowest reported sensitivity was 80%, while the highest reported sensitivity was 99% in studies in which ML and DL was directly compared with the gold standard histopathology. The lowest reported specificity was 87% while the highest reported specificity was 100%. The highest reported balanced accuracy was 100% and the lowest was 84%.Extensive search of the database revealed a limited number of studies that have applied ML or DL to differentiate PCNSL from GBM. Of the currently published studies, Both DL & ML algorithms have demonstrated encouraging results and certainly have the potential to aid neurooncologists in taking preoperative decisions in the future leading to not only reduction in morbidities but also be cost effective." @default.
- W4300961058 created "2022-10-04" @default.
- W4300961058 creator A5019480878 @default.
- W4300961058 creator A5033773167 @default.
- W4300961058 creator A5045256517 @default.
- W4300961058 creator A5054272293 @default.
- W4300961058 creator A5063174317 @default.
- W4300961058 creator A5088525257 @default.
- W4300961058 creator A5091204758 @default.
- W4300961058 date "2022-10-03" @default.
- W4300961058 modified "2023-10-16" @default.
- W4300961058 title "Classifying primary central nervous system lymphoma from glioblastoma using deep learning and radiomics based machine learning approach - a systematic review and meta-analysis" @default.
- W4300961058 cites W2128739912 @default.
- W4300961058 cites W2134201967 @default.
- W4300961058 cites W2151784424 @default.
- W4300961058 cites W2558562912 @default.
- W4300961058 cites W2582555581 @default.
- W4300961058 cites W2613777097 @default.
- W4300961058 cites W2768312554 @default.
- W4300961058 cites W2787262857 @default.
- W4300961058 cites W2792549713 @default.
- W4300961058 cites W2804187314 @default.
- W4300961058 cites W2809254203 @default.
- W4300961058 cites W2886819503 @default.
- W4300961058 cites W2888749348 @default.
- W4300961058 cites W2892321735 @default.
- W4300961058 cites W2914836117 @default.
- W4300961058 cites W2915554894 @default.
- W4300961058 cites W2922701384 @default.
- W4300961058 cites W2925659335 @default.
- W4300961058 cites W2938995906 @default.
- W4300961058 cites W2945709598 @default.
- W4300961058 cites W2998789541 @default.
- W4300961058 cites W3004476491 @default.
- W4300961058 cites W3048802680 @default.
- W4300961058 cites W3087501512 @default.
- W4300961058 cites W3092486564 @default.
- W4300961058 cites W3112668943 @default.
- W4300961058 cites W3156940509 @default.
- W4300961058 cites W3165247001 @default.
- W4300961058 cites W3185961698 @default.
- W4300961058 cites W3202679657 @default.
- W4300961058 cites W4210665583 @default.
- W4300961058 cites W4223955000 @default.
- W4300961058 cites W4225690973 @default.
- W4300961058 doi "https://doi.org/10.3389/fonc.2022.884173" @default.
- W4300961058 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36263203" @default.
- W4300961058 hasPublicationYear "2022" @default.
- W4300961058 type Work @default.
- W4300961058 citedByCount "6" @default.
- W4300961058 countsByYear W43009610582023 @default.
- W4300961058 crossrefType "journal-article" @default.
- W4300961058 hasAuthorship W4300961058A5019480878 @default.
- W4300961058 hasAuthorship W4300961058A5033773167 @default.
- W4300961058 hasAuthorship W4300961058A5045256517 @default.
- W4300961058 hasAuthorship W4300961058A5054272293 @default.
- W4300961058 hasAuthorship W4300961058A5063174317 @default.
- W4300961058 hasAuthorship W4300961058A5088525257 @default.
- W4300961058 hasAuthorship W4300961058A5091204758 @default.
- W4300961058 hasBestOaLocation W43009610581 @default.
- W4300961058 hasConcept C119857082 @default.
- W4300961058 hasConcept C126322002 @default.
- W4300961058 hasConcept C154945302 @default.
- W4300961058 hasConcept C17744445 @default.
- W4300961058 hasConcept C189708586 @default.
- W4300961058 hasConcept C19527891 @default.
- W4300961058 hasConcept C199539241 @default.
- W4300961058 hasConcept C2776194525 @default.
- W4300961058 hasConcept C2779338263 @default.
- W4300961058 hasConcept C2779473830 @default.
- W4300961058 hasConcept C2781173314 @default.
- W4300961058 hasConcept C41008148 @default.
- W4300961058 hasConcept C502942594 @default.
- W4300961058 hasConcept C71924100 @default.
- W4300961058 hasConcept C95190672 @default.
- W4300961058 hasConceptScore W4300961058C119857082 @default.
- W4300961058 hasConceptScore W4300961058C126322002 @default.
- W4300961058 hasConceptScore W4300961058C154945302 @default.
- W4300961058 hasConceptScore W4300961058C17744445 @default.
- W4300961058 hasConceptScore W4300961058C189708586 @default.
- W4300961058 hasConceptScore W4300961058C19527891 @default.
- W4300961058 hasConceptScore W4300961058C199539241 @default.
- W4300961058 hasConceptScore W4300961058C2776194525 @default.
- W4300961058 hasConceptScore W4300961058C2779338263 @default.
- W4300961058 hasConceptScore W4300961058C2779473830 @default.
- W4300961058 hasConceptScore W4300961058C2781173314 @default.
- W4300961058 hasConceptScore W4300961058C41008148 @default.
- W4300961058 hasConceptScore W4300961058C502942594 @default.
- W4300961058 hasConceptScore W4300961058C71924100 @default.
- W4300961058 hasConceptScore W4300961058C95190672 @default.
- W4300961058 hasLocation W43009610581 @default.
- W4300961058 hasLocation W43009610582 @default.
- W4300961058 hasLocation W43009610583 @default.
- W4300961058 hasOpenAccess W4300961058 @default.
- W4300961058 hasPrimaryLocation W43009610581 @default.
- W4300961058 hasRelatedWork W2098995101 @default.
- W4300961058 hasRelatedWork W3027459656 @default.
- W4300961058 hasRelatedWork W3082854370 @default.
- W4300961058 hasRelatedWork W3134414398 @default.
- W4300961058 hasRelatedWork W4210720822 @default.