Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300961604> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4300961604 endingPage "134" @default.
- W4300961604 startingPage "123" @default.
- W4300961604 abstract "Automatic road crack detection is an important transportation maintenance responsibility for ensuring driving comfort and safety. Manual inspection is considered to be a risky method because it is time consuming, costly, and dangerous for the inspectors. Automated road crack detecting techniques have been extensively researched and developed in order to overcome this issue. Despite the difficulties, most of the proposed methodologies and solutions involve machine vision and machine learning, which have lately acquired traction largely due to the increasingly more affordable processing power. Nonetheless, it remains a difficult task due to the inhomogeneity of crack intensity and the intricacy of the background. In this paper, a convolutional neural network-based method for crack detection is proposed. The method is inspired from recent advancements in applying machine learning to computer vision. The primary goal of this work is to employ convolutional neural networks to detect the road crack. Data in the form of images has been used as input, preprocessing and threshold segmentation is applied to the input data. The processed output is feed to CNN for feature extraction and classification. The training accuracy was found to be 96.20 %, the validation accuracy to be 96.50 %, and the testing accuracy to be 94.5 %." @default.
- W4300961604 created "2022-10-04" @default.
- W4300961604 creator A5016916320 @default.
- W4300961604 creator A5055416012 @default.
- W4300961604 creator A5056843517 @default.
- W4300961604 creator A5060309320 @default.
- W4300961604 creator A5076070516 @default.
- W4300961604 creator A5083185319 @default.
- W4300961604 date "2022-09-25" @default.
- W4300961604 modified "2023-10-13" @default.
- W4300961604 title "Detection of Road Cracks Using Convolutional Neural Networks and Threshold Segmentation" @default.
- W4300961604 doi "https://doi.org/10.51662/jiae.v2i2.82" @default.
- W4300961604 hasPublicationYear "2022" @default.
- W4300961604 type Work @default.
- W4300961604 citedByCount "1" @default.
- W4300961604 crossrefType "journal-article" @default.
- W4300961604 hasAuthorship W4300961604A5016916320 @default.
- W4300961604 hasAuthorship W4300961604A5055416012 @default.
- W4300961604 hasAuthorship W4300961604A5056843517 @default.
- W4300961604 hasAuthorship W4300961604A5060309320 @default.
- W4300961604 hasAuthorship W4300961604A5076070516 @default.
- W4300961604 hasAuthorship W4300961604A5083185319 @default.
- W4300961604 hasBestOaLocation W43009616041 @default.
- W4300961604 hasConcept C10551718 @default.
- W4300961604 hasConcept C108583219 @default.
- W4300961604 hasConcept C119857082 @default.
- W4300961604 hasConcept C127413603 @default.
- W4300961604 hasConcept C138885662 @default.
- W4300961604 hasConcept C153180895 @default.
- W4300961604 hasConcept C154945302 @default.
- W4300961604 hasConcept C201995342 @default.
- W4300961604 hasConcept C2776401178 @default.
- W4300961604 hasConcept C2780451532 @default.
- W4300961604 hasConcept C31972630 @default.
- W4300961604 hasConcept C34736171 @default.
- W4300961604 hasConcept C41008148 @default.
- W4300961604 hasConcept C41895202 @default.
- W4300961604 hasConcept C50644808 @default.
- W4300961604 hasConcept C52622490 @default.
- W4300961604 hasConcept C81363708 @default.
- W4300961604 hasConcept C89600930 @default.
- W4300961604 hasConceptScore W4300961604C10551718 @default.
- W4300961604 hasConceptScore W4300961604C108583219 @default.
- W4300961604 hasConceptScore W4300961604C119857082 @default.
- W4300961604 hasConceptScore W4300961604C127413603 @default.
- W4300961604 hasConceptScore W4300961604C138885662 @default.
- W4300961604 hasConceptScore W4300961604C153180895 @default.
- W4300961604 hasConceptScore W4300961604C154945302 @default.
- W4300961604 hasConceptScore W4300961604C201995342 @default.
- W4300961604 hasConceptScore W4300961604C2776401178 @default.
- W4300961604 hasConceptScore W4300961604C2780451532 @default.
- W4300961604 hasConceptScore W4300961604C31972630 @default.
- W4300961604 hasConceptScore W4300961604C34736171 @default.
- W4300961604 hasConceptScore W4300961604C41008148 @default.
- W4300961604 hasConceptScore W4300961604C41895202 @default.
- W4300961604 hasConceptScore W4300961604C50644808 @default.
- W4300961604 hasConceptScore W4300961604C52622490 @default.
- W4300961604 hasConceptScore W4300961604C81363708 @default.
- W4300961604 hasConceptScore W4300961604C89600930 @default.
- W4300961604 hasIssue "2" @default.
- W4300961604 hasLocation W43009616041 @default.
- W4300961604 hasOpenAccess W4300961604 @default.
- W4300961604 hasPrimaryLocation W43009616041 @default.
- W4300961604 hasRelatedWork W2126100045 @default.
- W4300961604 hasRelatedWork W2279398222 @default.
- W4300961604 hasRelatedWork W2391959412 @default.
- W4300961604 hasRelatedWork W2546942002 @default.
- W4300961604 hasRelatedWork W2982011997 @default.
- W4300961604 hasRelatedWork W3156786002 @default.
- W4300961604 hasRelatedWork W4200173597 @default.
- W4300961604 hasRelatedWork W4299822940 @default.
- W4300961604 hasRelatedWork W4313289316 @default.
- W4300961604 hasRelatedWork W4366492315 @default.
- W4300961604 hasVolume "2" @default.
- W4300961604 isParatext "false" @default.
- W4300961604 isRetracted "false" @default.
- W4300961604 workType "article" @default.