Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300963162> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4300963162 endingPage "106123" @default.
- W4300963162 startingPage "106123" @default.
- W4300963162 abstract "The recent investigation has started for evaluating the human respiratory sounds, like voice recorded, cough, and breathing from hospital confirmed Covid-19 tools, which differs from healthy person's sound. The cough-based detection of Covid-19 also considered with non-respiratory and respiratory sounds data related with all declared situations. Covid-19 is respiratory disease, which is usually produced by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). However, it is more indispensable to detect the positive cases for reducing further spread of virus, and former treatment of affected patients. With constant rise in the COVID-19 cases, there has been a constant rise in the need of efficient and safe ways to detect an infected individual. With the cases multiplying constantly, the current detecting devices like RT-PCR and fast testing kits have become short in supply. An effectual Covid-19 detection model using devised hybrid Honey Badger Optimization-based Deep Neuro Fuzzy Network (HBO-DNFN) is developed in this paper. Here, the audio signal is considered as input for detecting Covid-19. The gaussian filter is applied to input signal for removing the noises and then feature extraction is performed. The substantial features, like spectral roll-off, spectral bandwidth, Mel frequency cepstral coefficients (MFCC), spectral flatness, zero crossing rate, spectral centroid, mean square energy and spectral contract are extracted for further processing. Finally, DNFN is applied for detecting Covid-19 and the deep leaning model is trained by designed hybrid HBO algorithm. Accordingly, the developed Hybrid HBO method is newly designed by incorporating Honey Badger optimization Algorithm (HBA) and Jaya algorithm. The performance of developed Covid-19 detection model is evaluated using three metrics, like testing accuracy, sensitivity and specificity. The developed Hybrid HBO-based DNFN is outpaced than other existing approaches in terms of testing accuracy, sensitivity and specificity of 0.9176, 0.9218 and 0. 9219. All the test results are validated with the k-fold cross validation method in order to make an assessment of the generalizability of these results. When k-fold value is 9, sensitivity of existing techniques and developed JHBO-based DNFN is 0.8982, 0.8816, 0.8938, and 0.9207. The sensitivity of developed approach is improved by means of gaussian filtering model. The specificity of DCNN is 0.9125, BI-AT-GRU is 0.8926, and XGBoost is 0.9014, while developed JHBO-based DNFN is 0.9219 in k-fold value 9." @default.
- W4300963162 created "2022-10-04" @default.
- W4300963162 creator A5040122620 @default.
- W4300963162 creator A5043844315 @default.
- W4300963162 creator A5058736413 @default.
- W4300963162 date "2022-11-01" @default.
- W4300963162 modified "2023-10-04" @default.
- W4300963162 title "Design and development of hybrid optimization enabled deep learning model for COVID-19 detection with comparative analysis with DCNN, BIAT-GRU, XGBoost" @default.
- W4300963162 cites W2056561256 @default.
- W4300963162 cites W2521962736 @default.
- W4300963162 cites W3016610966 @default.
- W4300963162 cites W3024801014 @default.
- W4300963162 cites W3049131298 @default.
- W4300963162 cites W3095480712 @default.
- W4300963162 cites W3114640095 @default.
- W4300963162 cites W3129418948 @default.
- W4300963162 cites W3132012119 @default.
- W4300963162 cites W3136868560 @default.
- W4300963162 cites W3139484821 @default.
- W4300963162 cites W3158202104 @default.
- W4300963162 cites W3175127495 @default.
- W4300963162 cites W3176306803 @default.
- W4300963162 cites W3179490952 @default.
- W4300963162 cites W3196661916 @default.
- W4300963162 cites W3200516665 @default.
- W4300963162 cites W3207419166 @default.
- W4300963162 cites W4200607592 @default.
- W4300963162 cites W4214505893 @default.
- W4300963162 cites W4280637152 @default.
- W4300963162 cites W4285098962 @default.
- W4300963162 doi "https://doi.org/10.1016/j.compbiomed.2022.106123" @default.
- W4300963162 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36228465" @default.
- W4300963162 hasPublicationYear "2022" @default.
- W4300963162 type Work @default.
- W4300963162 citedByCount "7" @default.
- W4300963162 countsByYear W43009631622023 @default.
- W4300963162 crossrefType "journal-article" @default.
- W4300963162 hasAuthorship W4300963162A5040122620 @default.
- W4300963162 hasAuthorship W4300963162A5043844315 @default.
- W4300963162 hasAuthorship W4300963162A5058736413 @default.
- W4300963162 hasBestOaLocation W43009631622 @default.
- W4300963162 hasConcept C121332964 @default.
- W4300963162 hasConcept C142724271 @default.
- W4300963162 hasConcept C146599234 @default.
- W4300963162 hasConcept C151989614 @default.
- W4300963162 hasConcept C153180895 @default.
- W4300963162 hasConcept C154945302 @default.
- W4300963162 hasConcept C26405456 @default.
- W4300963162 hasConcept C2778530986 @default.
- W4300963162 hasConcept C2779134260 @default.
- W4300963162 hasConcept C28490314 @default.
- W4300963162 hasConcept C3008058167 @default.
- W4300963162 hasConcept C41008148 @default.
- W4300963162 hasConcept C524204448 @default.
- W4300963162 hasConcept C52622490 @default.
- W4300963162 hasConcept C62520636 @default.
- W4300963162 hasConcept C71924100 @default.
- W4300963162 hasConcept C88485024 @default.
- W4300963162 hasConceptScore W4300963162C121332964 @default.
- W4300963162 hasConceptScore W4300963162C142724271 @default.
- W4300963162 hasConceptScore W4300963162C146599234 @default.
- W4300963162 hasConceptScore W4300963162C151989614 @default.
- W4300963162 hasConceptScore W4300963162C153180895 @default.
- W4300963162 hasConceptScore W4300963162C154945302 @default.
- W4300963162 hasConceptScore W4300963162C26405456 @default.
- W4300963162 hasConceptScore W4300963162C2778530986 @default.
- W4300963162 hasConceptScore W4300963162C2779134260 @default.
- W4300963162 hasConceptScore W4300963162C28490314 @default.
- W4300963162 hasConceptScore W4300963162C3008058167 @default.
- W4300963162 hasConceptScore W4300963162C41008148 @default.
- W4300963162 hasConceptScore W4300963162C524204448 @default.
- W4300963162 hasConceptScore W4300963162C52622490 @default.
- W4300963162 hasConceptScore W4300963162C62520636 @default.
- W4300963162 hasConceptScore W4300963162C71924100 @default.
- W4300963162 hasConceptScore W4300963162C88485024 @default.
- W4300963162 hasLocation W43009631621 @default.
- W4300963162 hasLocation W43009631622 @default.
- W4300963162 hasLocation W43009631623 @default.
- W4300963162 hasOpenAccess W4300963162 @default.
- W4300963162 hasPrimaryLocation W43009631621 @default.
- W4300963162 hasRelatedWork W2066371342 @default.
- W4300963162 hasRelatedWork W2129382277 @default.
- W4300963162 hasRelatedWork W2135070170 @default.
- W4300963162 hasRelatedWork W2146247714 @default.
- W4300963162 hasRelatedWork W2186621033 @default.
- W4300963162 hasRelatedWork W2380849574 @default.
- W4300963162 hasRelatedWork W2383152411 @default.
- W4300963162 hasRelatedWork W2731878113 @default.
- W4300963162 hasRelatedWork W2782835988 @default.
- W4300963162 hasRelatedWork W4377970696 @default.
- W4300963162 hasVolume "150" @default.
- W4300963162 isParatext "false" @default.
- W4300963162 isRetracted "false" @default.
- W4300963162 workType "article" @default.