Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300976498> ?p ?o ?g. }
- W4300976498 abstract "Abstract Predicting treatment outcomes in traumatic brain injury (TBI) patients is challenging worldwide. The present study aimed to achieve the most accurate machine learning algorithms to predict the outcomes of TBI treatment by evaluating demographic features, laboratory data, imaging indices, and clinical features. We used data from 3347 patients admitted to a tertiary trauma centre in Iran from 2016 to 2021. After the exclusion of incomplete data, 1653 patients remained. We used machine learning algorithms such as Random Forest (RF) and Decision Tree (DT) with ten-fold cross-validation to develop the best prediction model. Our findings reveal that among different variables included in this study, the motor component of the Glasgow Coma Scale, condition of pupils, and condition of cisterns were the most reliable features for predicting in-hospital mortality, while the patients’ age takes the place of cisterns condition when considering the long-term survival of TBI patients. Also, we found that the RF algorithm is the best model to predict the short-term mortality of TBI patients. However, the generalized linear model (GLM) algorithm had the best performance (with an accuracy rate of 82.03 ± 2.34) in predicting the long-term survival of patients. Our results showed that using appropriate markers, and machine learning algorithms can provide a reliable prediction of TBI patients’ survival in the short- and long-term with reliable and easily accessible features of patients." @default.
- W4300976498 created "2022-10-04" @default.
- W4300976498 creator A5004071948 @default.
- W4300976498 creator A5010406926 @default.
- W4300976498 creator A5012297336 @default.
- W4300976498 creator A5013220879 @default.
- W4300976498 creator A5017524385 @default.
- W4300976498 creator A5021720735 @default.
- W4300976498 creator A5023238149 @default.
- W4300976498 creator A5034662116 @default.
- W4300976498 creator A5038369385 @default.
- W4300976498 creator A5052920850 @default.
- W4300976498 creator A5062860513 @default.
- W4300976498 creator A5076824950 @default.
- W4300976498 creator A5083567791 @default.
- W4300976498 creator A5083835125 @default.
- W4300976498 date "2022-08-08" @default.
- W4300976498 modified "2023-09-24" @default.
- W4300976498 title "Survival Prediction in Traumatic Brain Injury Patients Using Machine Learning Algorithms" @default.
- W4300976498 cites W1557523978 @default.
- W4300976498 cites W2009217495 @default.
- W4300976498 cites W2020176002 @default.
- W4300976498 cites W2051508626 @default.
- W4300976498 cites W2054395844 @default.
- W4300976498 cites W2070921889 @default.
- W4300976498 cites W2084053481 @default.
- W4300976498 cites W2084236584 @default.
- W4300976498 cites W2104441823 @default.
- W4300976498 cites W2121394390 @default.
- W4300976498 cites W2131109952 @default.
- W4300976498 cites W2407895322 @default.
- W4300976498 cites W2520959200 @default.
- W4300976498 cites W2555458909 @default.
- W4300976498 cites W2567830010 @default.
- W4300976498 cites W2579725890 @default.
- W4300976498 cites W2593193389 @default.
- W4300976498 cites W2763219253 @default.
- W4300976498 cites W2783212137 @default.
- W4300976498 cites W2802596563 @default.
- W4300976498 cites W2900981882 @default.
- W4300976498 cites W2901310727 @default.
- W4300976498 cites W2922285663 @default.
- W4300976498 cites W2946419075 @default.
- W4300976498 cites W2953505302 @default.
- W4300976498 cites W2953532875 @default.
- W4300976498 cites W2965640442 @default.
- W4300976498 cites W2966659986 @default.
- W4300976498 cites W3011571399 @default.
- W4300976498 cites W3028863763 @default.
- W4300976498 cites W3041956866 @default.
- W4300976498 cites W3140295078 @default.
- W4300976498 cites W3155545305 @default.
- W4300976498 cites W3184770156 @default.
- W4300976498 cites W3185654650 @default.
- W4300976498 cites W3209267501 @default.
- W4300976498 cites W3214479671 @default.
- W4300976498 cites W4205741871 @default.
- W4300976498 cites W4206577006 @default.
- W4300976498 cites W4220811147 @default.
- W4300976498 cites W4226366532 @default.
- W4300976498 doi "https://doi.org/10.21203/rs.3.rs-1916615/v1" @default.
- W4300976498 hasPublicationYear "2022" @default.
- W4300976498 type Work @default.
- W4300976498 citedByCount "1" @default.
- W4300976498 countsByYear W43009764982023 @default.
- W4300976498 crossrefType "posted-content" @default.
- W4300976498 hasAuthorship W4300976498A5004071948 @default.
- W4300976498 hasAuthorship W4300976498A5010406926 @default.
- W4300976498 hasAuthorship W4300976498A5012297336 @default.
- W4300976498 hasAuthorship W4300976498A5013220879 @default.
- W4300976498 hasAuthorship W4300976498A5017524385 @default.
- W4300976498 hasAuthorship W4300976498A5021720735 @default.
- W4300976498 hasAuthorship W4300976498A5023238149 @default.
- W4300976498 hasAuthorship W4300976498A5034662116 @default.
- W4300976498 hasAuthorship W4300976498A5038369385 @default.
- W4300976498 hasAuthorship W4300976498A5052920850 @default.
- W4300976498 hasAuthorship W4300976498A5062860513 @default.
- W4300976498 hasAuthorship W4300976498A5076824950 @default.
- W4300976498 hasAuthorship W4300976498A5083567791 @default.
- W4300976498 hasAuthorship W4300976498A5083835125 @default.
- W4300976498 hasBestOaLocation W43009764981 @default.
- W4300976498 hasConcept C11413529 @default.
- W4300976498 hasConcept C118552586 @default.
- W4300976498 hasConcept C119857082 @default.
- W4300976498 hasConcept C141071460 @default.
- W4300976498 hasConcept C154945302 @default.
- W4300976498 hasConcept C169258074 @default.
- W4300976498 hasConcept C17624336 @default.
- W4300976498 hasConcept C2781017439 @default.
- W4300976498 hasConcept C41008148 @default.
- W4300976498 hasConcept C71924100 @default.
- W4300976498 hasConcept C84525736 @default.
- W4300976498 hasConceptScore W4300976498C11413529 @default.
- W4300976498 hasConceptScore W4300976498C118552586 @default.
- W4300976498 hasConceptScore W4300976498C119857082 @default.
- W4300976498 hasConceptScore W4300976498C141071460 @default.
- W4300976498 hasConceptScore W4300976498C154945302 @default.
- W4300976498 hasConceptScore W4300976498C169258074 @default.
- W4300976498 hasConceptScore W4300976498C17624336 @default.
- W4300976498 hasConceptScore W4300976498C2781017439 @default.