Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300979371> ?p ?o ?g. }
- W4300979371 endingPage "1997" @default.
- W4300979371 startingPage "1986" @default.
- W4300979371 abstract "Whole-genome sequencing (WGS) is the gold standard for fully characterizing genetic variation but is still prohibitively expensive for large samples. To reduce costs, many studies sequence only a subset of individuals or genomic regions, and genotype imputation is used to infer genotypes for the remaining individuals or regions without sequencing data. However, not all variants can be well imputed, and the current state-of-the-art imputation quality metric, denoted as standard Rsq, is poorly calibrated for lower-frequency variants. Here, we propose MagicalRsq, a machine-learning-based method that integrates variant-level imputation and population genetics statistics, to provide a better calibrated imputation quality metric. Leveraging WGS data from the Cystic Fibrosis Genome Project (CFGP), and whole-exome sequence data from UK BioBank (UKB), we performed comprehensive experiments to evaluate the performance of MagicalRsq compared to standard Rsq for partially sequenced studies. We found that MagicalRsq aligns better with true R2 than standard Rsq in almost every situation evaluated, for both European and African ancestry samples. For example, when applying models trained from 1,992 CFGP sequenced samples to an independent 3,103 samples with no sequencing but TOPMed imputation from array genotypes, MagicalRsq, compared to standard Rsq, achieved net gains of 1.4 million rare, 117k low-frequency, and 18k common variants, where net gains were gained numbers of correctly distinguished variants by MagicalRsq over standard Rsq. MagicalRsq can serve as an improved post-imputation quality metric and will benefit downstream analysis by better distinguishing well-imputed variants from those poorly imputed. MagicalRsq is freely available on GitHub." @default.
- W4300979371 created "2022-10-04" @default.
- W4300979371 creator A5012690849 @default.
- W4300979371 creator A5014559891 @default.
- W4300979371 creator A5016238665 @default.
- W4300979371 creator A5017043628 @default.
- W4300979371 creator A5031945784 @default.
- W4300979371 creator A5033623131 @default.
- W4300979371 creator A5034697802 @default.
- W4300979371 creator A5035105357 @default.
- W4300979371 creator A5038242998 @default.
- W4300979371 creator A5039547164 @default.
- W4300979371 creator A5043283805 @default.
- W4300979371 creator A5049763932 @default.
- W4300979371 creator A5054683932 @default.
- W4300979371 creator A5055982974 @default.
- W4300979371 creator A5064174809 @default.
- W4300979371 creator A5066829790 @default.
- W4300979371 creator A5075221740 @default.
- W4300979371 creator A5077901762 @default.
- W4300979371 creator A5090729138 @default.
- W4300979371 date "2022-11-01" @default.
- W4300979371 modified "2023-10-14" @default.
- W4300979371 title "MagicalRsq: Machine-learning-based genotype imputation quality calibration" @default.
- W4300979371 cites W1604845156 @default.
- W4300979371 cites W1803035418 @default.
- W4300979371 cites W1966644930 @default.
- W4300979371 cites W1984390786 @default.
- W4300979371 cites W2024365856 @default.
- W4300979371 cites W2026884584 @default.
- W4300979371 cites W2056155495 @default.
- W4300979371 cites W2086995400 @default.
- W4300979371 cites W2087036932 @default.
- W4300979371 cites W2119067354 @default.
- W4300979371 cites W2127178674 @default.
- W4300979371 cites W2127864194 @default.
- W4300979371 cites W2130593768 @default.
- W4300979371 cites W2132752562 @default.
- W4300979371 cites W2140449543 @default.
- W4300979371 cites W2140784970 @default.
- W4300979371 cites W2151061572 @default.
- W4300979371 cites W2152867256 @default.
- W4300979371 cites W2157149092 @default.
- W4300979371 cites W2163705275 @default.
- W4300979371 cites W2166501262 @default.
- W4300979371 cites W2168718259 @default.
- W4300979371 cites W2336227533 @default.
- W4300979371 cites W2510973425 @default.
- W4300979371 cites W2529241974 @default.
- W4300979371 cites W2557981253 @default.
- W4300979371 cites W2588003345 @default.
- W4300979371 cites W2616922646 @default.
- W4300979371 cites W2787902098 @default.
- W4300979371 cites W2790808809 @default.
- W4300979371 cites W2804307951 @default.
- W4300979371 cites W2883210850 @default.
- W4300979371 cites W2895486342 @default.
- W4300979371 cites W2914286455 @default.
- W4300979371 cites W2945053782 @default.
- W4300979371 cites W2950732129 @default.
- W4300979371 cites W2952113787 @default.
- W4300979371 cites W2996024184 @default.
- W4300979371 cites W3081528139 @default.
- W4300979371 cites W3082575318 @default.
- W4300979371 cites W3094550675 @default.
- W4300979371 cites W3126160703 @default.
- W4300979371 cites W3191508265 @default.
- W4300979371 cites W3207912190 @default.
- W4300979371 cites W4214844850 @default.
- W4300979371 cites W4220951585 @default.
- W4300979371 cites W4225286463 @default.
- W4300979371 cites W4225716713 @default.
- W4300979371 cites W4240204556 @default.
- W4300979371 cites W4280552086 @default.
- W4300979371 doi "https://doi.org/10.1016/j.ajhg.2022.09.009" @default.
- W4300979371 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36198314" @default.
- W4300979371 hasPublicationYear "2022" @default.
- W4300979371 type Work @default.
- W4300979371 citedByCount "3" @default.
- W4300979371 countsByYear W43009793712023 @default.
- W4300979371 crossrefType "journal-article" @default.
- W4300979371 hasAuthorship W4300979371A5012690849 @default.
- W4300979371 hasAuthorship W4300979371A5014559891 @default.
- W4300979371 hasAuthorship W4300979371A5016238665 @default.
- W4300979371 hasAuthorship W4300979371A5017043628 @default.
- W4300979371 hasAuthorship W4300979371A5031945784 @default.
- W4300979371 hasAuthorship W4300979371A5033623131 @default.
- W4300979371 hasAuthorship W4300979371A5034697802 @default.
- W4300979371 hasAuthorship W4300979371A5035105357 @default.
- W4300979371 hasAuthorship W4300979371A5038242998 @default.
- W4300979371 hasAuthorship W4300979371A5039547164 @default.
- W4300979371 hasAuthorship W4300979371A5043283805 @default.
- W4300979371 hasAuthorship W4300979371A5049763932 @default.
- W4300979371 hasAuthorship W4300979371A5054683932 @default.
- W4300979371 hasAuthorship W4300979371A5055982974 @default.
- W4300979371 hasAuthorship W4300979371A5064174809 @default.
- W4300979371 hasAuthorship W4300979371A5066829790 @default.
- W4300979371 hasAuthorship W4300979371A5075221740 @default.