Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300981010> ?p ?o ?g. }
- W4300981010 endingPage "103900" @default.
- W4300981010 startingPage "103900" @default.
- W4300981010 abstract "Stress, depression, and anxiety are a person's physiological states that emerge from various body features such as speech, body language, eye contact, facial expression, etc. Physiological emotion is a part of human life and is associated with psychological activities. Sad emotion is relatable to negative thoughts and recognized in three stages containing stress, anxiety, and depression. These stages of Physiological emotion show various common and distinguished symptoms. The present study explores stress, depression, and anxiety symptoms in student life. The study reviews the psychological features generated through various body parts to identify psychological activities. Environmental factors, including a daily routine, greatly trigger psychological activities. The psychological disorder may affect mental and physical health adversely. The correct recognition of such disorder is expensive and time-consuming as it requires accurate datasets of symptoms. In the present study, an attempt has been made to investigate the effectiveness of computerized automated techniques that include machine learning algorithms for identifying stress, anxiety, and depression mental disorder. The proposed paper reviews the machine learning-based algorithms applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. During the review process, the proposed study found that artificial intelligence and machine learning techniques are well recommended and widely utilized in most of the existing literature for measuring psychological disorders. The various machine learning-based algorithms are applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. There has been continuous monitoring for the body symptoms established in the various existing literature to identify psychological states. The present review reveals the study of excellence and competence of machine learning techniques in detecting psychological disorders' stress, depression, and anxiety parameters. This paper shows a systematic review of some existing computer vision-based models with their merits and demerits." @default.
- W4300981010 created "2022-10-04" @default.
- W4300981010 creator A5046019318 @default.
- W4300981010 creator A5081964198 @default.
- W4300981010 date "2022-12-01" @default.
- W4300981010 modified "2023-10-18" @default.
- W4300981010 title "Computer assisted identification of stress, anxiety, depression (SAD) in students: A state-of-the-art review" @default.
- W4300981010 cites W1973767074 @default.
- W4300981010 cites W1976247888 @default.
- W4300981010 cites W2018781045 @default.
- W4300981010 cites W2032047402 @default.
- W4300981010 cites W2037916102 @default.
- W4300981010 cites W2044450809 @default.
- W4300981010 cites W2051270857 @default.
- W4300981010 cites W2055458476 @default.
- W4300981010 cites W2068165155 @default.
- W4300981010 cites W2070681224 @default.
- W4300981010 cites W2080244544 @default.
- W4300981010 cites W2087620062 @default.
- W4300981010 cites W2099269331 @default.
- W4300981010 cites W2103407041 @default.
- W4300981010 cites W2125967074 @default.
- W4300981010 cites W2130393138 @default.
- W4300981010 cites W2140275529 @default.
- W4300981010 cites W2159433378 @default.
- W4300981010 cites W2162743207 @default.
- W4300981010 cites W2196480341 @default.
- W4300981010 cites W2368514363 @default.
- W4300981010 cites W2513294073 @default.
- W4300981010 cites W2607413350 @default.
- W4300981010 cites W2725198038 @default.
- W4300981010 cites W2732051544 @default.
- W4300981010 cites W2910882902 @default.
- W4300981010 cites W2917316317 @default.
- W4300981010 cites W2918153055 @default.
- W4300981010 cites W2918867753 @default.
- W4300981010 cites W2992839631 @default.
- W4300981010 cites W2996420077 @default.
- W4300981010 cites W2998697012 @default.
- W4300981010 cites W3015528157 @default.
- W4300981010 cites W3016300495 @default.
- W4300981010 cites W3033450475 @default.
- W4300981010 cites W3036602089 @default.
- W4300981010 cites W3038571794 @default.
- W4300981010 cites W3039048294 @default.
- W4300981010 cites W3048260470 @default.
- W4300981010 cites W3084153107 @default.
- W4300981010 cites W3086971346 @default.
- W4300981010 cites W3087738933 @default.
- W4300981010 cites W3089126423 @default.
- W4300981010 cites W3093664251 @default.
- W4300981010 cites W3097085879 @default.
- W4300981010 cites W3098017922 @default.
- W4300981010 cites W3107474201 @default.
- W4300981010 cites W3117211261 @default.
- W4300981010 cites W3132469654 @default.
- W4300981010 cites W3133911964 @default.
- W4300981010 cites W3135821252 @default.
- W4300981010 cites W3136795301 @default.
- W4300981010 cites W3153990557 @default.
- W4300981010 cites W3155194341 @default.
- W4300981010 cites W3156639232 @default.
- W4300981010 cites W3158103655 @default.
- W4300981010 cites W3158326637 @default.
- W4300981010 cites W3158609888 @default.
- W4300981010 cites W3161503680 @default.
- W4300981010 cites W3161996117 @default.
- W4300981010 cites W3162017859 @default.
- W4300981010 cites W3165650543 @default.
- W4300981010 cites W3167394498 @default.
- W4300981010 cites W3167709840 @default.
- W4300981010 cites W3170007993 @default.
- W4300981010 cites W3172638377 @default.
- W4300981010 cites W3172975847 @default.
- W4300981010 cites W3187107835 @default.
- W4300981010 cites W3189097511 @default.
- W4300981010 cites W3195758773 @default.
- W4300981010 cites W3198310233 @default.
- W4300981010 cites W3199736325 @default.
- W4300981010 cites W3200754973 @default.
- W4300981010 cites W3201231521 @default.
- W4300981010 cites W4210415145 @default.
- W4300981010 cites W4214951160 @default.
- W4300981010 cites W4220855582 @default.
- W4300981010 cites W4220933214 @default.
- W4300981010 cites W4224068224 @default.
- W4300981010 cites W4224107344 @default.
- W4300981010 cites W4224233835 @default.
- W4300981010 cites W4226109031 @default.
- W4300981010 cites W4226495014 @default.
- W4300981010 cites W4229946254 @default.
- W4300981010 cites W4243369473 @default.
- W4300981010 doi "https://doi.org/10.1016/j.medengphy.2022.103900" @default.
- W4300981010 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36273998" @default.
- W4300981010 hasPublicationYear "2022" @default.
- W4300981010 type Work @default.
- W4300981010 citedByCount "0" @default.
- W4300981010 crossrefType "journal-article" @default.