Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301008087> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4301008087 abstract "In this chapter we review the main literature related to kernel spectral clustering (KSC), an approach to clustering cast within a kernel-based optimization setting. KSC represents a least-squares support vector machine based formulation of spectral clustering described by a weighted kernel PCA objective. Just as in the classifier case, the binary clustering model is expressed by a hyperplane in a high dimensional space induced by a kernel. In addition, the multi-way clustering can be obtained by combining a set of binary decision functions via an Error Correcting Output Codes (ECOC) encoding scheme. Because of its model-based nature, the KSC method encompasses three main steps: training, validation, testing. In the validation stage model selection is performed to obtain tuning parameters, like the number of clusters present in the data. This is a major advantage compared to classical spectral clustering where the determination of the clustering parameters is unclear and relies on heuristics. Once a KSC model is trained on a small subset of the entire data, it is able to generalize well to unseen test points. Beyond the basic formulation, sparse KSC algorithms based on the Incomplete Cholesky Decomposition (ICD) and $L_0$, $L_1, L_0 + L_1$, Group Lasso regularization are reviewed. In that respect, we show how it is possible to handle large scale data. Also, two possible ways to perform hierarchical clustering and a soft clustering method are presented. Finally, real-world applications such as image segmentation, power load time-series clustering, document clustering and big data learning are considered." @default.
- W4301008087 created "2022-10-04" @default.
- W4301008087 creator A5022628045 @default.
- W4301008087 creator A5049697384 @default.
- W4301008087 creator A5078854904 @default.
- W4301008087 creator A5081637340 @default.
- W4301008087 date "2015-05-03" @default.
- W4301008087 modified "2023-09-27" @default.
- W4301008087 title "Kernel Spectral Clustering and applications" @default.
- W4301008087 doi "https://doi.org/10.48550/arxiv.1505.00477" @default.
- W4301008087 hasPublicationYear "2015" @default.
- W4301008087 type Work @default.
- W4301008087 citedByCount "0" @default.
- W4301008087 crossrefType "posted-content" @default.
- W4301008087 hasAuthorship W4301008087A5022628045 @default.
- W4301008087 hasAuthorship W4301008087A5049697384 @default.
- W4301008087 hasAuthorship W4301008087A5078854904 @default.
- W4301008087 hasAuthorship W4301008087A5081637340 @default.
- W4301008087 hasBestOaLocation W43010080871 @default.
- W4301008087 hasConcept C105611402 @default.
- W4301008087 hasConcept C114614502 @default.
- W4301008087 hasConcept C119857082 @default.
- W4301008087 hasConcept C122280245 @default.
- W4301008087 hasConcept C12267149 @default.
- W4301008087 hasConcept C124101348 @default.
- W4301008087 hasConcept C153180895 @default.
- W4301008087 hasConcept C154945302 @default.
- W4301008087 hasConcept C17212007 @default.
- W4301008087 hasConcept C184509293 @default.
- W4301008087 hasConcept C27964816 @default.
- W4301008087 hasConcept C33704608 @default.
- W4301008087 hasConcept C33923547 @default.
- W4301008087 hasConcept C41008148 @default.
- W4301008087 hasConcept C73555534 @default.
- W4301008087 hasConcept C74193536 @default.
- W4301008087 hasConcept C94641424 @default.
- W4301008087 hasConceptScore W4301008087C105611402 @default.
- W4301008087 hasConceptScore W4301008087C114614502 @default.
- W4301008087 hasConceptScore W4301008087C119857082 @default.
- W4301008087 hasConceptScore W4301008087C122280245 @default.
- W4301008087 hasConceptScore W4301008087C12267149 @default.
- W4301008087 hasConceptScore W4301008087C124101348 @default.
- W4301008087 hasConceptScore W4301008087C153180895 @default.
- W4301008087 hasConceptScore W4301008087C154945302 @default.
- W4301008087 hasConceptScore W4301008087C17212007 @default.
- W4301008087 hasConceptScore W4301008087C184509293 @default.
- W4301008087 hasConceptScore W4301008087C27964816 @default.
- W4301008087 hasConceptScore W4301008087C33704608 @default.
- W4301008087 hasConceptScore W4301008087C33923547 @default.
- W4301008087 hasConceptScore W4301008087C41008148 @default.
- W4301008087 hasConceptScore W4301008087C73555534 @default.
- W4301008087 hasConceptScore W4301008087C74193536 @default.
- W4301008087 hasConceptScore W4301008087C94641424 @default.
- W4301008087 hasLocation W43010080871 @default.
- W4301008087 hasOpenAccess W4301008087 @default.
- W4301008087 hasPrimaryLocation W43010080871 @default.
- W4301008087 hasRelatedWork W1538188876 @default.
- W4301008087 hasRelatedWork W2077066055 @default.
- W4301008087 hasRelatedWork W2163563073 @default.
- W4301008087 hasRelatedWork W2202413591 @default.
- W4301008087 hasRelatedWork W2295195969 @default.
- W4301008087 hasRelatedWork W2970954390 @default.
- W4301008087 hasRelatedWork W4312336793 @default.
- W4301008087 hasRelatedWork W1491908038 @default.
- W4301008087 hasRelatedWork W2185743328 @default.
- W4301008087 hasRelatedWork W2590117803 @default.
- W4301008087 isParatext "false" @default.
- W4301008087 isRetracted "false" @default.
- W4301008087 workType "article" @default.