Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301157049> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4301157049 abstract "Electricity theft is a major problem around the world in both developed and developing countries and may range up to 40% of the total electricity distributed. More generally, electricity theft belongs to non-technical losses (NTL), which are losses that occur during the distribution of electricity in power grids. In this paper, we build features from the neighborhood of customers. We first split the area in which the customers are located into grids of different sizes. For each grid cell we then compute the proportion of inspected customers and the proportion of NTL found among the inspected customers. We then analyze the distributions of features generated and show why they are useful to predict NTL. In addition, we compute features from the consumption time series of customers. We also use master data features of customers, such as their customer class and voltage of their connection. We compute these features for a Big Data base of 31M meter readings, 700K customers and 400K inspection results. We then use these features to train four machine learning algorithms that are particularly suitable for Big Data sets because of their parallelizable structure: logistic regression, k-nearest neighbors, linear support vector machine and random forest. Using the neighborhood features instead of only analyzing the time series has resulted in appreciable results for Big Data sets for varying NTL proportions of 1%-90%. This work can therefore be deployed to a wide range of different regions around the world." @default.
- W4301157049 created "2022-10-04" @default.
- W4301157049 creator A5004120190 @default.
- W4301157049 creator A5008505214 @default.
- W4301157049 creator A5036503865 @default.
- W4301157049 creator A5055420812 @default.
- W4301157049 creator A5069228908 @default.
- W4301157049 creator A5071500355 @default.
- W4301157049 creator A5084857626 @default.
- W4301157049 date "2016-07-04" @default.
- W4301157049 modified "2023-10-16" @default.
- W4301157049 title "Neighborhood Features Help Detecting Non-Technical Losses in Big Data Sets" @default.
- W4301157049 doi "https://doi.org/10.48550/arxiv.1607.00872" @default.
- W4301157049 hasPublicationYear "2016" @default.
- W4301157049 type Work @default.
- W4301157049 citedByCount "0" @default.
- W4301157049 crossrefType "posted-content" @default.
- W4301157049 hasAuthorship W4301157049A5004120190 @default.
- W4301157049 hasAuthorship W4301157049A5008505214 @default.
- W4301157049 hasAuthorship W4301157049A5036503865 @default.
- W4301157049 hasAuthorship W4301157049A5055420812 @default.
- W4301157049 hasAuthorship W4301157049A5069228908 @default.
- W4301157049 hasAuthorship W4301157049A5071500355 @default.
- W4301157049 hasAuthorship W4301157049A5084857626 @default.
- W4301157049 hasBestOaLocation W43011570491 @default.
- W4301157049 hasConcept C11413529 @default.
- W4301157049 hasConcept C119599485 @default.
- W4301157049 hasConcept C12267149 @default.
- W4301157049 hasConcept C124101348 @default.
- W4301157049 hasConcept C127413603 @default.
- W4301157049 hasConcept C146978453 @default.
- W4301157049 hasConcept C148047603 @default.
- W4301157049 hasConcept C154945302 @default.
- W4301157049 hasConcept C169258074 @default.
- W4301157049 hasConcept C18762648 @default.
- W4301157049 hasConcept C187691185 @default.
- W4301157049 hasConcept C204323151 @default.
- W4301157049 hasConcept C206658404 @default.
- W4301157049 hasConcept C2524010 @default.
- W4301157049 hasConcept C2779510800 @default.
- W4301157049 hasConcept C33923547 @default.
- W4301157049 hasConcept C41008148 @default.
- W4301157049 hasConcept C75684735 @default.
- W4301157049 hasConcept C78519656 @default.
- W4301157049 hasConceptScore W4301157049C11413529 @default.
- W4301157049 hasConceptScore W4301157049C119599485 @default.
- W4301157049 hasConceptScore W4301157049C12267149 @default.
- W4301157049 hasConceptScore W4301157049C124101348 @default.
- W4301157049 hasConceptScore W4301157049C127413603 @default.
- W4301157049 hasConceptScore W4301157049C146978453 @default.
- W4301157049 hasConceptScore W4301157049C148047603 @default.
- W4301157049 hasConceptScore W4301157049C154945302 @default.
- W4301157049 hasConceptScore W4301157049C169258074 @default.
- W4301157049 hasConceptScore W4301157049C18762648 @default.
- W4301157049 hasConceptScore W4301157049C187691185 @default.
- W4301157049 hasConceptScore W4301157049C204323151 @default.
- W4301157049 hasConceptScore W4301157049C206658404 @default.
- W4301157049 hasConceptScore W4301157049C2524010 @default.
- W4301157049 hasConceptScore W4301157049C2779510800 @default.
- W4301157049 hasConceptScore W4301157049C33923547 @default.
- W4301157049 hasConceptScore W4301157049C41008148 @default.
- W4301157049 hasConceptScore W4301157049C75684735 @default.
- W4301157049 hasConceptScore W4301157049C78519656 @default.
- W4301157049 hasLocation W43011570491 @default.
- W4301157049 hasLocation W43011570492 @default.
- W4301157049 hasLocation W43011570493 @default.
- W4301157049 hasOpenAccess W4301157049 @default.
- W4301157049 hasPrimaryLocation W43011570491 @default.
- W4301157049 hasRelatedWork W2140937121 @default.
- W4301157049 hasRelatedWork W2355927362 @default.
- W4301157049 hasRelatedWork W2955796858 @default.
- W4301157049 hasRelatedWork W3003640290 @default.
- W4301157049 hasRelatedWork W3195168932 @default.
- W4301157049 hasRelatedWork W4200112873 @default.
- W4301157049 hasRelatedWork W4220933319 @default.
- W4301157049 hasRelatedWork W4224941037 @default.
- W4301157049 hasRelatedWork W4313459286 @default.
- W4301157049 hasRelatedWork W4385421858 @default.
- W4301157049 isParatext "false" @default.
- W4301157049 isRetracted "false" @default.
- W4301157049 workType "article" @default.