Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301176188> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4301176188 abstract "In this paper we present a theoretical foundation for a representation of a data set as a measure in a very large hierarchically parametrized family of positive measures, whose parameters can be computed explicitly (rather than estimated by optimization), and illustrate its applicability to a wide range of data types. The pre-processing step then consists of representing data sets as simple measures. The theoretical foundation consists of a dyadic product formula representation lemma, a visualization theorem. We also define an additive multiscale noise model which can be used to sample from dyadic measures and a more general multiplicative multiscale noise model which can be used to perturb continuous functions, Borel measures, and dyadic measures. The first two results are based on theorems. The representation uses the very simple concept of a dyadic tree, and hence is widely applicable, easily understood, and easily computed. Since the data sample is represented as a measure, subsequent analysis can exploit statistical and measure theoretic concepts and theories. Because the representation uses the very simple concept of a dyadic tree defined on the universe of a data set and the parameters are simply and explicitly computable and easily interpretable and visualizable, we hope that this approach will be broadly useful to mathematicians, statisticians, and computer scientists who are intrigued by or involved in data science including its mathematical foundations." @default.
- W4301176188 created "2022-10-04" @default.
- W4301176188 creator A5000561768 @default.
- W4301176188 creator A5010057692 @default.
- W4301176188 creator A5063918137 @default.
- W4301176188 creator A5087783507 @default.
- W4301176188 date "2016-01-12" @default.
- W4301176188 modified "2023-09-26" @default.
- W4301176188 title "Product Formalisms for Measures on Spaces with Binary Tree Structures: Representation, Visualization, and Multiscale Noise" @default.
- W4301176188 doi "https://doi.org/10.48550/arxiv.1601.02946" @default.
- W4301176188 hasPublicationYear "2016" @default.
- W4301176188 type Work @default.
- W4301176188 citedByCount "0" @default.
- W4301176188 crossrefType "posted-content" @default.
- W4301176188 hasAuthorship W4301176188A5000561768 @default.
- W4301176188 hasAuthorship W4301176188A5010057692 @default.
- W4301176188 hasAuthorship W4301176188A5063918137 @default.
- W4301176188 hasAuthorship W4301176188A5087783507 @default.
- W4301176188 hasBestOaLocation W43011761881 @default.
- W4301176188 hasConcept C113174947 @default.
- W4301176188 hasConcept C11413529 @default.
- W4301176188 hasConcept C124101348 @default.
- W4301176188 hasConcept C134306372 @default.
- W4301176188 hasConcept C171018156 @default.
- W4301176188 hasConcept C177264268 @default.
- W4301176188 hasConcept C17744445 @default.
- W4301176188 hasConcept C18903297 @default.
- W4301176188 hasConcept C197855036 @default.
- W4301176188 hasConcept C199360897 @default.
- W4301176188 hasConcept C199539241 @default.
- W4301176188 hasConcept C2524010 @default.
- W4301176188 hasConcept C2776359362 @default.
- W4301176188 hasConcept C2777759810 @default.
- W4301176188 hasConcept C2780009758 @default.
- W4301176188 hasConcept C33923547 @default.
- W4301176188 hasConcept C41008148 @default.
- W4301176188 hasConcept C46757340 @default.
- W4301176188 hasConcept C80444323 @default.
- W4301176188 hasConcept C86803240 @default.
- W4301176188 hasConcept C94625758 @default.
- W4301176188 hasConceptScore W4301176188C113174947 @default.
- W4301176188 hasConceptScore W4301176188C11413529 @default.
- W4301176188 hasConceptScore W4301176188C124101348 @default.
- W4301176188 hasConceptScore W4301176188C134306372 @default.
- W4301176188 hasConceptScore W4301176188C171018156 @default.
- W4301176188 hasConceptScore W4301176188C177264268 @default.
- W4301176188 hasConceptScore W4301176188C17744445 @default.
- W4301176188 hasConceptScore W4301176188C18903297 @default.
- W4301176188 hasConceptScore W4301176188C197855036 @default.
- W4301176188 hasConceptScore W4301176188C199360897 @default.
- W4301176188 hasConceptScore W4301176188C199539241 @default.
- W4301176188 hasConceptScore W4301176188C2524010 @default.
- W4301176188 hasConceptScore W4301176188C2776359362 @default.
- W4301176188 hasConceptScore W4301176188C2777759810 @default.
- W4301176188 hasConceptScore W4301176188C2780009758 @default.
- W4301176188 hasConceptScore W4301176188C33923547 @default.
- W4301176188 hasConceptScore W4301176188C41008148 @default.
- W4301176188 hasConceptScore W4301176188C46757340 @default.
- W4301176188 hasConceptScore W4301176188C80444323 @default.
- W4301176188 hasConceptScore W4301176188C86803240 @default.
- W4301176188 hasConceptScore W4301176188C94625758 @default.
- W4301176188 hasLocation W43011761881 @default.
- W4301176188 hasOpenAccess W4301176188 @default.
- W4301176188 hasPrimaryLocation W43011761881 @default.
- W4301176188 hasRelatedWork W1498362922 @default.
- W4301176188 hasRelatedWork W2068266569 @default.
- W4301176188 hasRelatedWork W2140453300 @default.
- W4301176188 hasRelatedWork W2143008661 @default.
- W4301176188 hasRelatedWork W2166829200 @default.
- W4301176188 hasRelatedWork W2294842961 @default.
- W4301176188 hasRelatedWork W2392952531 @default.
- W4301176188 hasRelatedWork W2491277646 @default.
- W4301176188 hasRelatedWork W2555848829 @default.
- W4301176188 hasRelatedWork W3104784296 @default.
- W4301176188 isParatext "false" @default.
- W4301176188 isRetracted "false" @default.
- W4301176188 workType "article" @default.