Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301179940> ?p ?o ?g. }
- W4301179940 abstract "The annual area burned due to wildfires in the western United States (WUS) increased by more than 300% between 1984 and 2020. However, accounting for the nonlinear, spatially heterogeneous interactions between climate, vegetation, and human predictors driving the trends in fire frequency and sizes at different spatial scales remains a challenging problem for statistical fire models. Here we introduce a novel stochastic machine learning (ML) framework to model observed fire frequencies and sizes in 12 km x 12 km grid cells across the WUS. This framework is implemented using Mixture Density Networks trained on a wide suite of input predictors. The modeled WUS fire frequency corresponds well with observations at both monthly (r= 0.94) and annual (r= 0.85) timescales, as do the monthly (r= 0.90) and annual (r= 0.88) area burned. Moreover, the annual time series of both fire variables exhibit strong correlations (r >= 0.6) in 16 out of 18 ecoregions. Our ML model captures the interannual variability and the distinct multidecade increases in annual area burned for both forested and non-forested ecoregions. Evaluating predictor importance with Shapley additive explanations, we find that fire month vapor pressure deficit (VPD) is the dominant driver of fire frequencies and sizes across the WUS, followed by 1000-hour dead fuel moisture (FM1000), total monthly precipitation (Prec), mean daily maximum temperature (Tmax), and fraction of grassland cover in a grid cell. Our findings serve as a promising use case of ML techniques for wildfire prediction in particular and extreme event modeling more broadly." @default.
- W4301179940 created "2022-10-04" @default.
- W4301179940 creator A5002961360 @default.
- W4301179940 creator A5014976944 @default.
- W4301179940 creator A5057234168 @default.
- W4301179940 creator A5061588829 @default.
- W4301179940 creator A5080018570 @default.
- W4301179940 date "2022-10-04" @default.
- W4301179940 modified "2023-10-16" @default.
- W4301179940 title "Modeling wildfire activity in the western United States with machine learning" @default.
- W4301179940 cites W1522627058 @default.
- W4301179940 cites W1951684732 @default.
- W4301179940 cites W1965599912 @default.
- W4301179940 cites W1988713966 @default.
- W4301179940 cites W1995047010 @default.
- W4301179940 cites W2001150023 @default.
- W4301179940 cites W2003043371 @default.
- W4301179940 cites W2005802362 @default.
- W4301179940 cites W2018769658 @default.
- W4301179940 cites W2019446850 @default.
- W4301179940 cites W2042444893 @default.
- W4301179940 cites W2044963123 @default.
- W4301179940 cites W2046463643 @default.
- W4301179940 cites W2059904261 @default.
- W4301179940 cites W2065509880 @default.
- W4301179940 cites W2067987286 @default.
- W4301179940 cites W2088783722 @default.
- W4301179940 cites W2090191602 @default.
- W4301179940 cites W2101956016 @default.
- W4301179940 cites W2103475795 @default.
- W4301179940 cites W2106632946 @default.
- W4301179940 cites W2115506886 @default.
- W4301179940 cites W2134315730 @default.
- W4301179940 cites W2138514443 @default.
- W4301179940 cites W2138800506 @default.
- W4301179940 cites W2150165627 @default.
- W4301179940 cites W2150313815 @default.
- W4301179940 cites W2152719192 @default.
- W4301179940 cites W2154710695 @default.
- W4301179940 cites W2159582621 @default.
- W4301179940 cites W2160517849 @default.
- W4301179940 cites W2165977355 @default.
- W4301179940 cites W2172510282 @default.
- W4301179940 cites W2197879249 @default.
- W4301179940 cites W2266323528 @default.
- W4301179940 cites W2401580071 @default.
- W4301179940 cites W2509823463 @default.
- W4301179940 cites W2530960585 @default.
- W4301179940 cites W2556258679 @default.
- W4301179940 cites W2593972424 @default.
- W4301179940 cites W2605142690 @default.
- W4301179940 cites W2605367451 @default.
- W4301179940 cites W2732607881 @default.
- W4301179940 cites W2771755426 @default.
- W4301179940 cites W2774337825 @default.
- W4301179940 cites W2779662416 @default.
- W4301179940 cites W2793019346 @default.
- W4301179940 cites W2799473280 @default.
- W4301179940 cites W2890266850 @default.
- W4301179940 cites W2891721681 @default.
- W4301179940 cites W2899831659 @default.
- W4301179940 cites W2904678447 @default.
- W4301179940 cites W2913873397 @default.
- W4301179940 cites W2916079586 @default.
- W4301179940 cites W2936752304 @default.
- W4301179940 cites W2956661266 @default.
- W4301179940 cites W2968595706 @default.
- W4301179940 cites W2971807528 @default.
- W4301179940 cites W2973592401 @default.
- W4301179940 cites W3014632484 @default.
- W4301179940 cites W3015107957 @default.
- W4301179940 cites W3034737156 @default.
- W4301179940 cites W3042999389 @default.
- W4301179940 cites W3088775335 @default.
- W4301179940 cites W3095821188 @default.
- W4301179940 cites W3099079911 @default.
- W4301179940 cites W3114742923 @default.
- W4301179940 cites W3128636865 @default.
- W4301179940 cites W3155303419 @default.
- W4301179940 cites W3160821556 @default.
- W4301179940 cites W3173578102 @default.
- W4301179940 cites W3185743759 @default.
- W4301179940 cites W3194356499 @default.
- W4301179940 cites W3201006542 @default.
- W4301179940 cites W3207978175 @default.
- W4301179940 cites W3209434414 @default.
- W4301179940 cites W3210469621 @default.
- W4301179940 cites W3214589077 @default.
- W4301179940 cites W4210306964 @default.
- W4301179940 cites W4210842920 @default.
- W4301179940 cites W4213360454 @default.
- W4301179940 cites W4220711976 @default.
- W4301179940 cites W4220856044 @default.
- W4301179940 cites W4221048778 @default.
- W4301179940 cites W4224303822 @default.
- W4301179940 cites W4225847972 @default.
- W4301179940 cites W4229445829 @default.
- W4301179940 cites W4234001324 @default.
- W4301179940 cites W4240807599 @default.
- W4301179940 cites W4243065686 @default.