Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301180399> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4301180399 abstract "Compared with the rich studies on the motor brain-computer interface (BCI), the recently emerging affective BCI presents distinct challenges since the brain functional connectivity networks involving emotion are not well investigated. Previous studies on emotion recognition based on electroencephalography (EEG) signals mainly rely on single-channel-based feature extraction methods. In this paper, we propose a novel emotion-relevant critical subnetwork selection algorithm and investigate three EEG functional connectivity network features: strength, clustering coefficient, and eigenvector centrality. The discrimination ability of the EEG connectivity features in emotion recognition is evaluated on three public emotion EEG datasets: SEED, SEED-V, and DEAP. The strength feature achieves the best classification performance and outperforms the state-of-the-art differential entropy feature based on single-channel analysis. The experimental results reveal that distinct functional connectivity patterns are exhibited for the five emotions of disgust, fear, sadness, happiness, and neutrality. Furthermore, we construct a multimodal emotion recognition model by combining the functional connectivity features from EEG and the features from eye movements or physiological signals using deep canonical correlation analysis. The classification accuracies of multimodal emotion recognition are 95.08/6.42% on the SEED dataset, 84.51/5.11% on the SEED-V dataset, and 85.34/2.90% and 86.61/3.76% for arousal and valence on the DEAP dataset, respectively. The results demonstrate the complementary representation properties of the EEG connectivity features with eye movement data. In addition, we find that the brain networks constructed with 18 channels achieve comparable performance with that of the 62-channel network in multimodal emotion recognition and enable easier setups for BCI systems in real scenarios." @default.
- W4301180399 created "2022-10-04" @default.
- W4301180399 creator A5030570249 @default.
- W4301180399 creator A5056335002 @default.
- W4301180399 creator A5072326245 @default.
- W4301180399 date "2020-04-04" @default.
- W4301180399 modified "2023-09-27" @default.
- W4301180399 title "Investigating EEG-Based Functional Connectivity Patterns for Multimodal Emotion Recognition" @default.
- W4301180399 doi "https://doi.org/10.48550/arxiv.2004.01973" @default.
- W4301180399 hasPublicationYear "2020" @default.
- W4301180399 type Work @default.
- W4301180399 citedByCount "1" @default.
- W4301180399 countsByYear W43011803992023 @default.
- W4301180399 crossrefType "posted-content" @default.
- W4301180399 hasAuthorship W4301180399A5030570249 @default.
- W4301180399 hasAuthorship W4301180399A5056335002 @default.
- W4301180399 hasAuthorship W4301180399A5072326245 @default.
- W4301180399 hasBestOaLocation W43011803991 @default.
- W4301180399 hasConcept C118552586 @default.
- W4301180399 hasConcept C153180895 @default.
- W4301180399 hasConcept C154945302 @default.
- W4301180399 hasConcept C15744967 @default.
- W4301180399 hasConcept C169760540 @default.
- W4301180399 hasConcept C173201364 @default.
- W4301180399 hasConcept C206310091 @default.
- W4301180399 hasConcept C2779302386 @default.
- W4301180399 hasConcept C2779812673 @default.
- W4301180399 hasConcept C28490314 @default.
- W4301180399 hasConcept C41008148 @default.
- W4301180399 hasConcept C522805319 @default.
- W4301180399 hasConcept C6438553 @default.
- W4301180399 hasConceptScore W4301180399C118552586 @default.
- W4301180399 hasConceptScore W4301180399C153180895 @default.
- W4301180399 hasConceptScore W4301180399C154945302 @default.
- W4301180399 hasConceptScore W4301180399C15744967 @default.
- W4301180399 hasConceptScore W4301180399C169760540 @default.
- W4301180399 hasConceptScore W4301180399C173201364 @default.
- W4301180399 hasConceptScore W4301180399C206310091 @default.
- W4301180399 hasConceptScore W4301180399C2779302386 @default.
- W4301180399 hasConceptScore W4301180399C2779812673 @default.
- W4301180399 hasConceptScore W4301180399C28490314 @default.
- W4301180399 hasConceptScore W4301180399C41008148 @default.
- W4301180399 hasConceptScore W4301180399C522805319 @default.
- W4301180399 hasConceptScore W4301180399C6438553 @default.
- W4301180399 hasLocation W43011803991 @default.
- W4301180399 hasOpenAccess W4301180399 @default.
- W4301180399 hasPrimaryLocation W43011803991 @default.
- W4301180399 hasRelatedWork W2000038444 @default.
- W4301180399 hasRelatedWork W2025917256 @default.
- W4301180399 hasRelatedWork W2291880358 @default.
- W4301180399 hasRelatedWork W2523577021 @default.
- W4301180399 hasRelatedWork W2788007871 @default.
- W4301180399 hasRelatedWork W2902877680 @default.
- W4301180399 hasRelatedWork W2980067186 @default.
- W4301180399 hasRelatedWork W3033658423 @default.
- W4301180399 hasRelatedWork W4255476263 @default.
- W4301180399 hasRelatedWork W4366374509 @default.
- W4301180399 isParatext "false" @default.
- W4301180399 isRetracted "false" @default.
- W4301180399 workType "article" @default.