Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301184428> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4301184428 abstract "Dust storms are considered a severe meteorological disaster, especially in arid and semi-arid regions, which are characterized by dust aerosol-filled air and strong winds across an extensive area. Every year, a large number of aerosols are released from dust storms into the atmosphere, manipulating a deleterious impact both on the environment and human lives. Even if an increasing emphasis is being placed on dust storms due to the rapid change in global climate in the last fifty years by utilizing the measurements from the moderate-resolution imaging spectroradiometer (MODIS), the possibility of utilizing MODIS true-color composite images for the task has not been sufficiently discussed yet. Here, a supervised ensemble learning approach comprising three state-of-the-art models is proposed to detect dust aerosols in the atmosphere of the Earth to test the above hypothesis. The proposed method incorporates a linear combination of U-Net, DeepLabv3+ and Swin U-Net as the deep learning architecture which quantifies a binary semantic segmentation problem of distinguishing dust-susceptible and non- susceptible regions in each unconstrained MODIS image. The framework is tested upon a custom-developed dataset from MODIS measurements which contains 1020 true-colour images, over land and ocean. The ground truth label for each image is manipulated through handcrafted binary segmentation which results in a binary ground truth image for each true-colour MODIS image. The performance of the proposed framework is evaluated using mean intersection-over-union (mIoU) and average pixel accuracy (ACC) in terms of the semantic detection of dust aerosols. In the final testing, the framework achieved its highest Acc of 87.3% with a mIoU of 75.2%. The obtained performance of the framework surpasses the single state-of-the-art modalities and thus, aggregates to a more accurate implementation in the domain of dust aerosol detection." @default.
- W4301184428 created "2022-10-04" @default.
- W4301184428 creator A5007268181 @default.
- W4301184428 date "2022-09-01" @default.
- W4301184428 modified "2023-09-27" @default.
- W4301184428 title "Ensemble Deep Learning for Automated Dust Storm Detection Using Satellite Images" @default.
- W4301184428 cites W1901129140 @default.
- W4301184428 cites W1903029394 @default.
- W4301184428 cites W2063582051 @default.
- W4301184428 cites W2088584154 @default.
- W4301184428 cites W2108598243 @default.
- W4301184428 cites W2170249757 @default.
- W4301184428 cites W2542664367 @default.
- W4301184428 cites W2626165712 @default.
- W4301184428 cites W2770198780 @default.
- W4301184428 cites W2964309882 @default.
- W4301184428 cites W2964491411 @default.
- W4301184428 cites W2985980583 @default.
- W4301184428 cites W3094956067 @default.
- W4301184428 cites W3107291997 @default.
- W4301184428 doi "https://doi.org/10.1109/scse56529.2022.9905145" @default.
- W4301184428 hasPublicationYear "2022" @default.
- W4301184428 type Work @default.
- W4301184428 citedByCount "0" @default.
- W4301184428 crossrefType "proceedings-article" @default.
- W4301184428 hasAuthorship W4301184428A5007268181 @default.
- W4301184428 hasConcept C105306849 @default.
- W4301184428 hasConcept C121332964 @default.
- W4301184428 hasConcept C124504099 @default.
- W4301184428 hasConcept C127313418 @default.
- W4301184428 hasConcept C1276947 @default.
- W4301184428 hasConcept C146849305 @default.
- W4301184428 hasConcept C153294291 @default.
- W4301184428 hasConcept C154945302 @default.
- W4301184428 hasConcept C160633673 @default.
- W4301184428 hasConcept C19269812 @default.
- W4301184428 hasConcept C205372480 @default.
- W4301184428 hasConcept C205649164 @default.
- W4301184428 hasConcept C2777007095 @default.
- W4301184428 hasConcept C2781449660 @default.
- W4301184428 hasConcept C39432304 @default.
- W4301184428 hasConcept C41008148 @default.
- W4301184428 hasConcept C58640448 @default.
- W4301184428 hasConcept C62649853 @default.
- W4301184428 hasConcept C64543145 @default.
- W4301184428 hasConcept C65440619 @default.
- W4301184428 hasConcept C89600930 @default.
- W4301184428 hasConceptScore W4301184428C105306849 @default.
- W4301184428 hasConceptScore W4301184428C121332964 @default.
- W4301184428 hasConceptScore W4301184428C124504099 @default.
- W4301184428 hasConceptScore W4301184428C127313418 @default.
- W4301184428 hasConceptScore W4301184428C1276947 @default.
- W4301184428 hasConceptScore W4301184428C146849305 @default.
- W4301184428 hasConceptScore W4301184428C153294291 @default.
- W4301184428 hasConceptScore W4301184428C154945302 @default.
- W4301184428 hasConceptScore W4301184428C160633673 @default.
- W4301184428 hasConceptScore W4301184428C19269812 @default.
- W4301184428 hasConceptScore W4301184428C205372480 @default.
- W4301184428 hasConceptScore W4301184428C205649164 @default.
- W4301184428 hasConceptScore W4301184428C2777007095 @default.
- W4301184428 hasConceptScore W4301184428C2781449660 @default.
- W4301184428 hasConceptScore W4301184428C39432304 @default.
- W4301184428 hasConceptScore W4301184428C41008148 @default.
- W4301184428 hasConceptScore W4301184428C58640448 @default.
- W4301184428 hasConceptScore W4301184428C62649853 @default.
- W4301184428 hasConceptScore W4301184428C64543145 @default.
- W4301184428 hasConceptScore W4301184428C65440619 @default.
- W4301184428 hasConceptScore W4301184428C89600930 @default.
- W4301184428 hasLocation W43011844281 @default.
- W4301184428 hasOpenAccess W4301184428 @default.
- W4301184428 hasPrimaryLocation W43011844281 @default.
- W4301184428 hasRelatedWork W158826679 @default.
- W4301184428 hasRelatedWork W2006443041 @default.
- W4301184428 hasRelatedWork W2010235570 @default.
- W4301184428 hasRelatedWork W2058796918 @default.
- W4301184428 hasRelatedWork W2130151498 @default.
- W4301184428 hasRelatedWork W2151600032 @default.
- W4301184428 hasRelatedWork W2739874619 @default.
- W4301184428 hasRelatedWork W2907667403 @default.
- W4301184428 hasRelatedWork W3117032475 @default.
- W4301184428 hasRelatedWork W4294967773 @default.
- W4301184428 isParatext "false" @default.
- W4301184428 isRetracted "false" @default.
- W4301184428 workType "article" @default.