Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301272227> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4301272227 endingPage "100022" @default.
- W4301272227 startingPage "100022" @default.
- W4301272227 abstract "As a core part of an autonomous driving system, motion planning plays an important role in safe driving. However, traditional model- and rule-based methods lack the ability to learn interactively with the environment, and learning-based methods still have problems in terms of reliability. To overcome these problems, a hybrid motion planning framework (HMPF) is proposed to improve the performance of motion planning, which is composed of learning-based behavior planning and optimization-based trajectory planning. The behavior planning module adopts a deep reinforcement learning (DRL) algorithm, which can learn from the interaction between the ego vehicle (EV) and other human-driven vehicles (HDVs), and generate behavior decision commands based on environmental perception information. In particular, the intelligent driver model (IDM) calibrated based on real driving data is used to drive HDVs to imitate human driving behavior and interactive response, so as to simulate the bidirectional interaction between EV and HDVs. Meanwhile, trajectory planning module adopts the optimization method based on road Frenet coordinates, which can generate safe and comfortable desired trajectory while reducing the solution dimension of the problem. In addition, trajectory planning also exists as a safety hard constraint of behavior planning to ensure the feasibility of decision instruction. The experimental results demonstrate the effectiveness and feasibility of the proposed HMPF for autonomous driving motion planning in urban mixed traffic flow scenarios." @default.
- W4301272227 created "2022-10-05" @default.
- W4301272227 creator A5024222994 @default.
- W4301272227 creator A5032507421 @default.
- W4301272227 creator A5040586421 @default.
- W4301272227 creator A5045320043 @default.
- W4301272227 creator A5052678450 @default.
- W4301272227 date "2022-12-01" @default.
- W4301272227 modified "2023-10-16" @default.
- W4301272227 title "A hybrid motion planning framework for autonomous driving in mixed traffic flow" @default.
- W4301272227 cites W1971086298 @default.
- W4301272227 cites W1981622069 @default.
- W4301272227 cites W1983948265 @default.
- W4301272227 cites W1993450261 @default.
- W4301272227 cites W1996183429 @default.
- W4301272227 cites W2096636360 @default.
- W4301272227 cites W2136445059 @default.
- W4301272227 cites W2144966261 @default.
- W4301272227 cites W2192586580 @default.
- W4301272227 cites W2343568200 @default.
- W4301272227 cites W2588289902 @default.
- W4301272227 cites W2794547239 @default.
- W4301272227 cites W2795543364 @default.
- W4301272227 cites W2969818521 @default.
- W4301272227 cites W3127561923 @default.
- W4301272227 cites W3183449896 @default.
- W4301272227 cites W3204174732 @default.
- W4301272227 cites W4205266671 @default.
- W4301272227 cites W4226141644 @default.
- W4301272227 cites W4236470048 @default.
- W4301272227 doi "https://doi.org/10.1016/j.geits.2022.100022" @default.
- W4301272227 hasPublicationYear "2022" @default.
- W4301272227 type Work @default.
- W4301272227 citedByCount "1" @default.
- W4301272227 countsByYear W43012722272023 @default.
- W4301272227 crossrefType "journal-article" @default.
- W4301272227 hasAuthorship W4301272227A5024222994 @default.
- W4301272227 hasAuthorship W4301272227A5032507421 @default.
- W4301272227 hasAuthorship W4301272227A5040586421 @default.
- W4301272227 hasAuthorship W4301272227A5045320043 @default.
- W4301272227 hasAuthorship W4301272227A5052678450 @default.
- W4301272227 hasBestOaLocation W43012722271 @default.
- W4301272227 hasConcept C104114177 @default.
- W4301272227 hasConcept C121332964 @default.
- W4301272227 hasConcept C127413603 @default.
- W4301272227 hasConcept C1276947 @default.
- W4301272227 hasConcept C13662910 @default.
- W4301272227 hasConcept C154945302 @default.
- W4301272227 hasConcept C2776036281 @default.
- W4301272227 hasConcept C41008148 @default.
- W4301272227 hasConcept C44154836 @default.
- W4301272227 hasConcept C78519656 @default.
- W4301272227 hasConcept C81074085 @default.
- W4301272227 hasConcept C90509273 @default.
- W4301272227 hasConcept C97541855 @default.
- W4301272227 hasConceptScore W4301272227C104114177 @default.
- W4301272227 hasConceptScore W4301272227C121332964 @default.
- W4301272227 hasConceptScore W4301272227C127413603 @default.
- W4301272227 hasConceptScore W4301272227C1276947 @default.
- W4301272227 hasConceptScore W4301272227C13662910 @default.
- W4301272227 hasConceptScore W4301272227C154945302 @default.
- W4301272227 hasConceptScore W4301272227C2776036281 @default.
- W4301272227 hasConceptScore W4301272227C41008148 @default.
- W4301272227 hasConceptScore W4301272227C44154836 @default.
- W4301272227 hasConceptScore W4301272227C78519656 @default.
- W4301272227 hasConceptScore W4301272227C81074085 @default.
- W4301272227 hasConceptScore W4301272227C90509273 @default.
- W4301272227 hasConceptScore W4301272227C97541855 @default.
- W4301272227 hasFunder F4320321001 @default.
- W4301272227 hasIssue "3" @default.
- W4301272227 hasLocation W43012722271 @default.
- W4301272227 hasLocation W43012722272 @default.
- W4301272227 hasOpenAccess W4301272227 @default.
- W4301272227 hasPrimaryLocation W43012722271 @default.
- W4301272227 hasRelatedWork W2126446360 @default.
- W4301272227 hasRelatedWork W2209116470 @default.
- W4301272227 hasRelatedWork W2244960081 @default.
- W4301272227 hasRelatedWork W2294250153 @default.
- W4301272227 hasRelatedWork W2319870462 @default.
- W4301272227 hasRelatedWork W3074294383 @default.
- W4301272227 hasRelatedWork W4312941588 @default.
- W4301272227 hasRelatedWork W4313412948 @default.
- W4301272227 hasRelatedWork W54244440 @default.
- W4301272227 hasRelatedWork W2189342182 @default.
- W4301272227 hasVolume "1" @default.
- W4301272227 isParatext "false" @default.
- W4301272227 isRetracted "false" @default.
- W4301272227 workType "article" @default.