Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301367403> ?p ?o ?g. }
- W4301367403 endingPage "105201" @default.
- W4301367403 startingPage "105201" @default.
- W4301367403 abstract "Wind environment monitoring at the bridge site is essential in structural health monitoring (SHM). However, as the performance of the electronic equipment for bridge SHM system deteriorates, wind monitoring data often suffer from long-term continuous data missing. The duration of data missing may be as long as several months, creating barriers to safety monitoring and monitoring data mining of the bridge structures. The conventional interpolation techniques hardly achieve the desired data recovery. Therefore, a framework was proposed for long-term missing wind data recovery based on a deep neural network (DNN) utilizing a free access database (European Center for Medium-Range Weather Forecasts, ECMWF). This framework consisted of one regression task (Task 1) and one temporal super-resolution task (Task 2). In Task 1, the hourly wind data provided by ECMWF were first learned to the hourly ones of the bridge SHM system. In Task 2, the low-resolution wind data (hourly averages) were upsampled to high-resolution ones (10-min averages). The U-net architecture provided the basis for the DNNs in both tasks. Unlike the conventional time-domain loss function used in Task 1, Task 2 adopted a time-frequency cross-domain loss function for training, which innovatively employed a spectrum magnitude balance strategy to enhance the reconstruction of the high-frequency components of wind speed signals. The proposed framework's feasibility and effectiveness were verified through a case study of recovering long-term continuous missing wind data in the SHM system of Sutong Bridge, China. The proposed methodology provides a new perspective for recovering long-term continuous missing SHM data." @default.
- W4301367403 created "2022-10-05" @default.
- W4301367403 creator A5037331373 @default.
- W4301367403 creator A5079493144 @default.
- W4301367403 creator A5082599988 @default.
- W4301367403 creator A5089559746 @default.
- W4301367403 date "2022-11-01" @default.
- W4301367403 modified "2023-09-27" @default.
- W4301367403 title "Long-term missing wind data recovery using free access databases and deep learning for bridge health monitoring" @default.
- W4301367403 cites W2000614416 @default.
- W4301367403 cites W2016436692 @default.
- W4301367403 cites W2283805875 @default.
- W4301367403 cites W2322550103 @default.
- W4301367403 cites W2419904246 @default.
- W4301367403 cites W2591474132 @default.
- W4301367403 cites W2742095539 @default.
- W4301367403 cites W2773604480 @default.
- W4301367403 cites W2787766789 @default.
- W4301367403 cites W2788611176 @default.
- W4301367403 cites W2883975332 @default.
- W4301367403 cites W2889485154 @default.
- W4301367403 cites W2914777339 @default.
- W4301367403 cites W2968368194 @default.
- W4301367403 cites W2981933843 @default.
- W4301367403 cites W2990696146 @default.
- W4301367403 cites W3001158989 @default.
- W4301367403 cites W3015607560 @default.
- W4301367403 cites W3016531071 @default.
- W4301367403 cites W3031149341 @default.
- W4301367403 cites W3034239664 @default.
- W4301367403 cites W3038367626 @default.
- W4301367403 cites W3040044013 @default.
- W4301367403 cites W3042250946 @default.
- W4301367403 cites W3082546239 @default.
- W4301367403 cites W3092593798 @default.
- W4301367403 cites W3120336970 @default.
- W4301367403 cites W3121040400 @default.
- W4301367403 cites W3125868443 @default.
- W4301367403 cites W3129506774 @default.
- W4301367403 cites W3129564219 @default.
- W4301367403 cites W3133747210 @default.
- W4301367403 cites W3134695619 @default.
- W4301367403 cites W3163575931 @default.
- W4301367403 cites W3170808441 @default.
- W4301367403 cites W3175570749 @default.
- W4301367403 cites W3176288042 @default.
- W4301367403 cites W3179528031 @default.
- W4301367403 cites W3195157552 @default.
- W4301367403 cites W3200945737 @default.
- W4301367403 cites W4220867658 @default.
- W4301367403 cites W4283771184 @default.
- W4301367403 cites W791823215 @default.
- W4301367403 doi "https://doi.org/10.1016/j.jweia.2022.105201" @default.
- W4301367403 hasPublicationYear "2022" @default.
- W4301367403 type Work @default.
- W4301367403 citedByCount "3" @default.
- W4301367403 countsByYear W43013674032022 @default.
- W4301367403 countsByYear W43013674032023 @default.
- W4301367403 crossrefType "journal-article" @default.
- W4301367403 hasAuthorship W4301367403A5037331373 @default.
- W4301367403 hasAuthorship W4301367403A5079493144 @default.
- W4301367403 hasAuthorship W4301367403A5082599988 @default.
- W4301367403 hasAuthorship W4301367403A5089559746 @default.
- W4301367403 hasConcept C100776233 @default.
- W4301367403 hasConcept C104114177 @default.
- W4301367403 hasConcept C108583219 @default.
- W4301367403 hasConcept C119857082 @default.
- W4301367403 hasConcept C121332964 @default.
- W4301367403 hasConcept C124101348 @default.
- W4301367403 hasConcept C126322002 @default.
- W4301367403 hasConcept C127413603 @default.
- W4301367403 hasConcept C137800194 @default.
- W4301367403 hasConcept C153294291 @default.
- W4301367403 hasConcept C154945302 @default.
- W4301367403 hasConcept C161067210 @default.
- W4301367403 hasConcept C201995342 @default.
- W4301367403 hasConcept C205649164 @default.
- W4301367403 hasConcept C2776247918 @default.
- W4301367403 hasConcept C2780451532 @default.
- W4301367403 hasConcept C41008148 @default.
- W4301367403 hasConcept C61797465 @default.
- W4301367403 hasConcept C62520636 @default.
- W4301367403 hasConcept C66938386 @default.
- W4301367403 hasConcept C71924100 @default.
- W4301367403 hasConcept C77088390 @default.
- W4301367403 hasConcept C79403827 @default.
- W4301367403 hasConcept C9357733 @default.
- W4301367403 hasConceptScore W4301367403C100776233 @default.
- W4301367403 hasConceptScore W4301367403C104114177 @default.
- W4301367403 hasConceptScore W4301367403C108583219 @default.
- W4301367403 hasConceptScore W4301367403C119857082 @default.
- W4301367403 hasConceptScore W4301367403C121332964 @default.
- W4301367403 hasConceptScore W4301367403C124101348 @default.
- W4301367403 hasConceptScore W4301367403C126322002 @default.
- W4301367403 hasConceptScore W4301367403C127413603 @default.
- W4301367403 hasConceptScore W4301367403C137800194 @default.
- W4301367403 hasConceptScore W4301367403C153294291 @default.
- W4301367403 hasConceptScore W4301367403C154945302 @default.