Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301390857> ?p ?o ?g. }
- W4301390857 endingPage "66" @default.
- W4301390857 startingPage "58" @default.
- W4301390857 abstract "In this study, we used machine learning (ML) to classify the cardiomyocyte (CM) content on day 10 of the differentiation of human-induced pluripotent stem cell (hiPSC)-laden microspheroids using easily acquirable nondestructive phase-contrast images taken in the middle of differentiation and tunable experimental parameters. Scale-up suspension culture, use of engineered tissues to support stem cell differentiation, and CM production for improved control over cellular microenvironment in the suspension system need nondestructive methods to track engineered tissue development. The ability to couple images that capture experimenter perceived “good” or “bad” batches based on visualization at early differentiation time points with actual experimental outcomes in an unbiased way is a step toward building these methods. In recent years, ML techniques have been successfully applied to identify critical process parameters and use this information to build models that describe process outcomes in cell production and hiPSC differentiation. Building upon these successes, here, we utilize convolutional neural networks (CNNs) to build a binary classifier model for CM content on differentiation day 10 (dd10) for hiPSC-CMs. We consider two separate data sets as potential input features for the classification models. The first set includes phase-contrast images of microspheroid tissues taken on days 3 and 5 of the differentiation batches at different experimental conditions. The second set supplements the images with tunable experimental differentiation parameters, such as cell concentration and microspheroids' size. The CM content classes were sufficient and insufficient. The accuracy of the CNN classifier using images only was 63%. The addition of experimental features increased the accuracy to 85%, indicating the importance of tunable parameters in predicting CM content. Machine learning approaches were used to predict the final cardiomyocyte (CM) content class (sufficient vs. insufficient) of engineered cardiac tissue microspheroids produced through suspension-based cardiac differentiation of human-induced pluripotent stem cell-laden engineered tissue microspheroids. The models used specified experimental features and data collected using nondestructive inexpensive methods, specifically phase-contrast images taken during the initial days of differentiation as inputs. The best model was a convolutional neural network trained using experimental features and differentiation day 5 images. It classified the CM content with 85% accuracy and replicated and formalized experimenter's visual intuition about differentiation outcomes by incorporating images from early time points." @default.
- W4301390857 created "2022-10-05" @default.
- W4301390857 creator A5007220201 @default.
- W4301390857 creator A5020176671 @default.
- W4301390857 creator A5020475590 @default.
- W4301390857 creator A5031711223 @default.
- W4301390857 creator A5040349873 @default.
- W4301390857 date "2023-01-01" @default.
- W4301390857 modified "2023-10-17" @default.
- W4301390857 title "Differentiating Engineered Tissue Images and Experimental Factors to Classify Cardiomyocyte Content" @default.
- W4301390857 cites W1802031919 @default.
- W4301390857 cites W1820605760 @default.
- W4301390857 cites W1841567071 @default.
- W4301390857 cites W1981690756 @default.
- W4301390857 cites W1994665356 @default.
- W4301390857 cites W2063100081 @default.
- W4301390857 cites W2066390373 @default.
- W4301390857 cites W2083599207 @default.
- W4301390857 cites W2092091646 @default.
- W4301390857 cites W2109553965 @default.
- W4301390857 cites W2119479037 @default.
- W4301390857 cites W2143684265 @default.
- W4301390857 cites W2170505850 @default.
- W4301390857 cites W2182674334 @default.
- W4301390857 cites W2196490965 @default.
- W4301390857 cites W2215717357 @default.
- W4301390857 cites W2340703376 @default.
- W4301390857 cites W2511882182 @default.
- W4301390857 cites W2751723768 @default.
- W4301390857 cites W2783781232 @default.
- W4301390857 cites W2790729248 @default.
- W4301390857 cites W2887011109 @default.
- W4301390857 cites W2909240409 @default.
- W4301390857 cites W2919115771 @default.
- W4301390857 cites W2942848957 @default.
- W4301390857 cites W2954679691 @default.
- W4301390857 cites W2963782603 @default.
- W4301390857 cites W2970177351 @default.
- W4301390857 cites W2990681107 @default.
- W4301390857 cites W2995519354 @default.
- W4301390857 cites W3007507664 @default.
- W4301390857 cites W3033330793 @default.
- W4301390857 cites W3045134780 @default.
- W4301390857 cites W3082480853 @default.
- W4301390857 cites W3087244093 @default.
- W4301390857 cites W3087373228 @default.
- W4301390857 cites W3107757056 @default.
- W4301390857 cites W3153290846 @default.
- W4301390857 cites W3169840289 @default.
- W4301390857 cites W4220893378 @default.
- W4301390857 cites W4288828781 @default.
- W4301390857 doi "https://doi.org/10.1089/ten.tea.2022.0122" @default.
- W4301390857 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36193567" @default.
- W4301390857 hasPublicationYear "2023" @default.
- W4301390857 type Work @default.
- W4301390857 citedByCount "1" @default.
- W4301390857 countsByYear W43013908572023 @default.
- W4301390857 crossrefType "journal-article" @default.
- W4301390857 hasAuthorship W4301390857A5007220201 @default.
- W4301390857 hasAuthorship W4301390857A5020176671 @default.
- W4301390857 hasAuthorship W4301390857A5020475590 @default.
- W4301390857 hasAuthorship W4301390857A5031711223 @default.
- W4301390857 hasAuthorship W4301390857A5040349873 @default.
- W4301390857 hasConcept C111919701 @default.
- W4301390857 hasConcept C119857082 @default.
- W4301390857 hasConcept C12267149 @default.
- W4301390857 hasConcept C127413603 @default.
- W4301390857 hasConcept C136229726 @default.
- W4301390857 hasConcept C153180895 @default.
- W4301390857 hasConcept C154945302 @default.
- W4301390857 hasConcept C186060115 @default.
- W4301390857 hasConcept C36464697 @default.
- W4301390857 hasConcept C41008148 @default.
- W4301390857 hasConcept C66905080 @default.
- W4301390857 hasConcept C81363708 @default.
- W4301390857 hasConcept C86803240 @default.
- W4301390857 hasConcept C95623464 @default.
- W4301390857 hasConcept C98045186 @default.
- W4301390857 hasConceptScore W4301390857C111919701 @default.
- W4301390857 hasConceptScore W4301390857C119857082 @default.
- W4301390857 hasConceptScore W4301390857C12267149 @default.
- W4301390857 hasConceptScore W4301390857C127413603 @default.
- W4301390857 hasConceptScore W4301390857C136229726 @default.
- W4301390857 hasConceptScore W4301390857C153180895 @default.
- W4301390857 hasConceptScore W4301390857C154945302 @default.
- W4301390857 hasConceptScore W4301390857C186060115 @default.
- W4301390857 hasConceptScore W4301390857C36464697 @default.
- W4301390857 hasConceptScore W4301390857C41008148 @default.
- W4301390857 hasConceptScore W4301390857C66905080 @default.
- W4301390857 hasConceptScore W4301390857C81363708 @default.
- W4301390857 hasConceptScore W4301390857C86803240 @default.
- W4301390857 hasConceptScore W4301390857C95623464 @default.
- W4301390857 hasConceptScore W4301390857C98045186 @default.
- W4301390857 hasIssue "1-2" @default.
- W4301390857 hasLocation W43013908571 @default.
- W4301390857 hasLocation W43013908572 @default.
- W4301390857 hasOpenAccess W4301390857 @default.
- W4301390857 hasPrimaryLocation W43013908571 @default.