Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301397265> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4301397265 endingPage "486" @default.
- W4301397265 startingPage "481" @default.
- W4301397265 abstract "The continuing Covid-19 pandemic, caused by the SARS-CoV2 virus, has attracted the eye of researchers and many studies have focussed on controlling it. Covid-19 has affected the daily life, employment, and health of human beings along with socio-economic disruption. Deep Learning (DL) has shown great potential in various medical applications in the past decade and continues to assist in effective medical image analysis. Therefore, it is effectively being utilized to explore its potential in controlling the pandemic. Chest X-Ray (CXR) images were used in studies pertaining to DL for medical image analysis. With the burgeoning of Covid-19 cases by day, it becomes imperative to effectively screen patients whose CXR images show a tendency of Covid-19 infection. Several innovative Convolutional Neural Network (CNN) models have been proposed so far for classifying medical CXR images. Moreover, some studies used a transfer learning (TL) approach on state-of-art CNN models for the classification task. In this paper, we do a comparative study of these CNN models and TL approaches on state-of-art CNN models and have proposed an ensemble Deep Convolution Neural Network model (DCNN)" @default.
- W4301397265 created "2022-10-05" @default.
- W4301397265 creator A5001120516 @default.
- W4301397265 creator A5012426504 @default.
- W4301397265 creator A5024705251 @default.
- W4301397265 date "2022-09-30" @default.
- W4301397265 modified "2023-10-04" @default.
- W4301397265 title "Ensemble Deep Convolution Neural Network for Sars-Cov-V2 Detection" @default.
- W4301397265 cites W3013601031 @default.
- W4301397265 cites W3017855299 @default.
- W4301397265 cites W3033616466 @default.
- W4301397265 cites W3045460727 @default.
- W4301397265 cites W3064374686 @default.
- W4301397265 cites W3091978650 @default.
- W4301397265 cites W3094764353 @default.
- W4301397265 cites W3133078580 @default.
- W4301397265 cites W4236526556 @default.
- W4301397265 cites W4283823898 @default.
- W4301397265 cites W4283829625 @default.
- W4301397265 cites W4285405893 @default.
- W4301397265 doi "https://doi.org/10.37391/ijeer.100313" @default.
- W4301397265 hasPublicationYear "2022" @default.
- W4301397265 type Work @default.
- W4301397265 citedByCount "2" @default.
- W4301397265 countsByYear W43013972652023 @default.
- W4301397265 crossrefType "journal-article" @default.
- W4301397265 hasAuthorship W4301397265A5001120516 @default.
- W4301397265 hasAuthorship W4301397265A5012426504 @default.
- W4301397265 hasAuthorship W4301397265A5024705251 @default.
- W4301397265 hasBestOaLocation W43013972651 @default.
- W4301397265 hasConcept C108583219 @default.
- W4301397265 hasConcept C11413529 @default.
- W4301397265 hasConcept C115961682 @default.
- W4301397265 hasConcept C119857082 @default.
- W4301397265 hasConcept C127413603 @default.
- W4301397265 hasConcept C142724271 @default.
- W4301397265 hasConcept C150899416 @default.
- W4301397265 hasConcept C153180895 @default.
- W4301397265 hasConcept C154945302 @default.
- W4301397265 hasConcept C201995342 @default.
- W4301397265 hasConcept C2779134260 @default.
- W4301397265 hasConcept C2780451532 @default.
- W4301397265 hasConcept C3008058167 @default.
- W4301397265 hasConcept C41008148 @default.
- W4301397265 hasConcept C45347329 @default.
- W4301397265 hasConcept C48103436 @default.
- W4301397265 hasConcept C50644808 @default.
- W4301397265 hasConcept C524204448 @default.
- W4301397265 hasConcept C71924100 @default.
- W4301397265 hasConcept C81363708 @default.
- W4301397265 hasConcept C89623803 @default.
- W4301397265 hasConceptScore W4301397265C108583219 @default.
- W4301397265 hasConceptScore W4301397265C11413529 @default.
- W4301397265 hasConceptScore W4301397265C115961682 @default.
- W4301397265 hasConceptScore W4301397265C119857082 @default.
- W4301397265 hasConceptScore W4301397265C127413603 @default.
- W4301397265 hasConceptScore W4301397265C142724271 @default.
- W4301397265 hasConceptScore W4301397265C150899416 @default.
- W4301397265 hasConceptScore W4301397265C153180895 @default.
- W4301397265 hasConceptScore W4301397265C154945302 @default.
- W4301397265 hasConceptScore W4301397265C201995342 @default.
- W4301397265 hasConceptScore W4301397265C2779134260 @default.
- W4301397265 hasConceptScore W4301397265C2780451532 @default.
- W4301397265 hasConceptScore W4301397265C3008058167 @default.
- W4301397265 hasConceptScore W4301397265C41008148 @default.
- W4301397265 hasConceptScore W4301397265C45347329 @default.
- W4301397265 hasConceptScore W4301397265C48103436 @default.
- W4301397265 hasConceptScore W4301397265C50644808 @default.
- W4301397265 hasConceptScore W4301397265C524204448 @default.
- W4301397265 hasConceptScore W4301397265C71924100 @default.
- W4301397265 hasConceptScore W4301397265C81363708 @default.
- W4301397265 hasConceptScore W4301397265C89623803 @default.
- W4301397265 hasIssue "3" @default.
- W4301397265 hasLocation W43013972651 @default.
- W4301397265 hasOpenAccess W4301397265 @default.
- W4301397265 hasPrimaryLocation W43013972651 @default.
- W4301397265 hasRelatedWork W3018421652 @default.
- W4301397265 hasRelatedWork W3021430260 @default.
- W4301397265 hasRelatedWork W3091976719 @default.
- W4301397265 hasRelatedWork W3192840557 @default.
- W4301397265 hasRelatedWork W4220996320 @default.
- W4301397265 hasRelatedWork W4285149559 @default.
- W4301397265 hasRelatedWork W4312200629 @default.
- W4301397265 hasRelatedWork W4312417841 @default.
- W4301397265 hasRelatedWork W4382286161 @default.
- W4301397265 hasRelatedWork W4386213806 @default.
- W4301397265 hasVolume "10" @default.
- W4301397265 isParatext "false" @default.
- W4301397265 isRetracted "false" @default.
- W4301397265 workType "article" @default.