Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301397814> ?p ?o ?g. }
- W4301397814 endingPage "354" @default.
- W4301397814 startingPage "344" @default.
- W4301397814 abstract "Abstract Background Artificial intelligence can be trained to outperform dermatologists in image‐based skin cancer diagnostics. However, the networks' sensitivity to biases and overfitting may hamper their clinical applicability. Objectives The aim of this study was to explain the potential consequences of implementing convolutional neural networks for stand‐alone melanoma diagnostics and skin lesion triage. Methods In this algorithm validation study on retrospective data, we reproduced and evaluated the performance of state‐of‐the‐art artificial intelligence (convolutional neural networks) for skin cancer diagnostics. The networks were trained on 25,331 annotated dermoscopic skin lesion images from an open‐source data set (ISIC‐2019) and tested using a novel data set (AISC‐2021) consisting of 26,591 annotated dermoscopic skin lesion images. We tested the trained algorithms' ability to generalize to new data and their diagnostic performance in two simulations (melanoma diagnostics and skin lesion triage). Results The trained algorithms performed significantly less accurate diagnostics on images of nevi, melanomas and actinic keratoses from the AISC‐2021 data set than the ISIC‐2019 data set ( p < 0.003). Almost one‐third (31.1%) of the melanomas were misclassified during the melanoma diagnostics simulation, irrespective of their Breslow thickness. Furthermore, the algorithms marked 92.7% of the lesions ‘suspicious’ during the triage simulation, which yielded a triage sensitivity and specificity of 99.7% and 8.2%, respectively. Conclusions Although state‐of‐the‐art artificial intelligence outperforms dermatologists on image‐based skin lesion classification within an artificial setting, additional data and technological advances are needed before clinical implementation." @default.
- W4301397814 created "2022-10-05" @default.
- W4301397814 creator A5004687651 @default.
- W4301397814 creator A5016326471 @default.
- W4301397814 creator A5018562618 @default.
- W4301397814 creator A5022145682 @default.
- W4301397814 creator A5035449013 @default.
- W4301397814 creator A5052283179 @default.
- W4301397814 creator A5053592397 @default.
- W4301397814 creator A5056477850 @default.
- W4301397814 creator A5058264848 @default.
- W4301397814 creator A5077142876 @default.
- W4301397814 creator A5077933341 @default.
- W4301397814 date "2022-10-03" @default.
- W4301397814 modified "2023-10-15" @default.
- W4301397814 title "Generalizability and usefulness of artificial intelligence for skin cancer diagnostics: An algorithm validation study" @default.
- W4301397814 cites W1971941564 @default.
- W4301397814 cites W1979004942 @default.
- W4301397814 cites W2004038883 @default.
- W4301397814 cites W2026720263 @default.
- W4301397814 cites W2041914157 @default.
- W4301397814 cites W2058305271 @default.
- W4301397814 cites W2094001542 @default.
- W4301397814 cites W2110431315 @default.
- W4301397814 cites W2128756499 @default.
- W4301397814 cites W2157825442 @default.
- W4301397814 cites W2284583894 @default.
- W4301397814 cites W2581082771 @default.
- W4301397814 cites W2806487945 @default.
- W4301397814 cites W2806853752 @default.
- W4301397814 cites W2887520110 @default.
- W4301397814 cites W2952971376 @default.
- W4301397814 cites W2956154093 @default.
- W4301397814 cites W2963121404 @default.
- W4301397814 cites W2969096242 @default.
- W4301397814 cites W2996440791 @default.
- W4301397814 cites W3000052733 @default.
- W4301397814 cites W3008798432 @default.
- W4301397814 cites W3011885901 @default.
- W4301397814 cites W3036298167 @default.
- W4301397814 cites W3037985811 @default.
- W4301397814 cites W3102785203 @default.
- W4301397814 cites W3108821140 @default.
- W4301397814 cites W3119946474 @default.
- W4301397814 cites W3120507271 @default.
- W4301397814 cites W3123777618 @default.
- W4301397814 cites W3160731451 @default.
- W4301397814 cites W3196396697 @default.
- W4301397814 cites W3199802323 @default.
- W4301397814 cites W4211112868 @default.
- W4301397814 cites W4224242326 @default.
- W4301397814 cites W4233868680 @default.
- W4301397814 doi "https://doi.org/10.1002/jvc2.59" @default.
- W4301397814 hasPublicationYear "2022" @default.
- W4301397814 type Work @default.
- W4301397814 citedByCount "5" @default.
- W4301397814 countsByYear W43013978142023 @default.
- W4301397814 crossrefType "journal-article" @default.
- W4301397814 hasAuthorship W4301397814A5004687651 @default.
- W4301397814 hasAuthorship W4301397814A5016326471 @default.
- W4301397814 hasAuthorship W4301397814A5018562618 @default.
- W4301397814 hasAuthorship W4301397814A5022145682 @default.
- W4301397814 hasAuthorship W4301397814A5035449013 @default.
- W4301397814 hasAuthorship W4301397814A5052283179 @default.
- W4301397814 hasAuthorship W4301397814A5053592397 @default.
- W4301397814 hasAuthorship W4301397814A5056477850 @default.
- W4301397814 hasAuthorship W4301397814A5058264848 @default.
- W4301397814 hasAuthorship W4301397814A5077142876 @default.
- W4301397814 hasAuthorship W4301397814A5077933341 @default.
- W4301397814 hasBestOaLocation W43013978141 @default.
- W4301397814 hasConcept C105795698 @default.
- W4301397814 hasConcept C11413529 @default.
- W4301397814 hasConcept C119857082 @default.
- W4301397814 hasConcept C121608353 @default.
- W4301397814 hasConcept C126322002 @default.
- W4301397814 hasConcept C154945302 @default.
- W4301397814 hasConcept C16005928 @default.
- W4301397814 hasConcept C194828623 @default.
- W4301397814 hasConcept C22019652 @default.
- W4301397814 hasConcept C27158222 @default.
- W4301397814 hasConcept C2777120189 @default.
- W4301397814 hasConcept C2777658100 @default.
- W4301397814 hasConcept C2777789703 @default.
- W4301397814 hasConcept C2988168687 @default.
- W4301397814 hasConcept C2991914496 @default.
- W4301397814 hasConcept C33923547 @default.
- W4301397814 hasConcept C41008148 @default.
- W4301397814 hasConcept C502942594 @default.
- W4301397814 hasConcept C50644808 @default.
- W4301397814 hasConcept C58489278 @default.
- W4301397814 hasConcept C71924100 @default.
- W4301397814 hasConcept C81363708 @default.
- W4301397814 hasConceptScore W4301397814C105795698 @default.
- W4301397814 hasConceptScore W4301397814C11413529 @default.
- W4301397814 hasConceptScore W4301397814C119857082 @default.
- W4301397814 hasConceptScore W4301397814C121608353 @default.
- W4301397814 hasConceptScore W4301397814C126322002 @default.
- W4301397814 hasConceptScore W4301397814C154945302 @default.