Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301397966> ?p ?o ?g. }
- W4301397966 endingPage "808" @default.
- W4301397966 startingPage "788" @default.
- W4301397966 abstract "Wind speed forecasting is the key to wind power conversion and management in smart grids. In this paper, a new hybrid model is proposed, which is composed of empirical mode decomposition, a convolutional neural network, a recurrent neural network and a linear regression network considering the model error. In this model, empirical mode decomposition is used to decompose the original wind speed series into multiple subseries, five types of neural networks are used as predictors for each subseries, and a linear regression network is used as the second-level predictor to forecast the wind speed and error series of each model. To verify the prediction ability of the model, experiments are performed using the wind speed data of three stations in the actual wind farm for four months. The results show that the proposed hybrid prediction model has better accuracy and stability than any single neural network model and any neural network model with decomposition preprocessing, which also shows that combination forecasting is a robust and reliable wind speed forecasting method." @default.
- W4301397966 created "2022-10-05" @default.
- W4301397966 creator A5026108247 @default.
- W4301397966 creator A5054897087 @default.
- W4301397966 creator A5055356487 @default.
- W4301397966 creator A5061063513 @default.
- W4301397966 creator A5077347513 @default.
- W4301397966 creator A5090197240 @default.
- W4301397966 creator A5091546389 @default.
- W4301397966 date "2022-11-01" @default.
- W4301397966 modified "2023-10-18" @default.
- W4301397966 title "A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error" @default.
- W4301397966 cites W1498436455 @default.
- W4301397966 cites W1923027492 @default.
- W4301397966 cites W2007221293 @default.
- W4301397966 cites W2009465763 @default.
- W4301397966 cites W2039306928 @default.
- W4301397966 cites W2049539602 @default.
- W4301397966 cites W2053143856 @default.
- W4301397966 cites W2064675550 @default.
- W4301397966 cites W2074715647 @default.
- W4301397966 cites W2079309933 @default.
- W4301397966 cites W2101457442 @default.
- W4301397966 cites W2515226028 @default.
- W4301397966 cites W2560370080 @default.
- W4301397966 cites W2586339343 @default.
- W4301397966 cites W2606817745 @default.
- W4301397966 cites W2617244595 @default.
- W4301397966 cites W2733454919 @default.
- W4301397966 cites W2737356448 @default.
- W4301397966 cites W2755364685 @default.
- W4301397966 cites W2761125196 @default.
- W4301397966 cites W2790834859 @default.
- W4301397966 cites W2792244305 @default.
- W4301397966 cites W2801503429 @default.
- W4301397966 cites W2805587443 @default.
- W4301397966 cites W2895861596 @default.
- W4301397966 cites W2899887821 @default.
- W4301397966 cites W2901152441 @default.
- W4301397966 cites W2904016210 @default.
- W4301397966 cites W2915806950 @default.
- W4301397966 cites W2936236242 @default.
- W4301397966 cites W2962996339 @default.
- W4301397966 cites W2964515763 @default.
- W4301397966 cites W2965492561 @default.
- W4301397966 cites W2974313728 @default.
- W4301397966 cites W2984347565 @default.
- W4301397966 cites W2989494743 @default.
- W4301397966 cites W3003244946 @default.
- W4301397966 cites W3007253500 @default.
- W4301397966 cites W3007764688 @default.
- W4301397966 cites W3015428797 @default.
- W4301397966 cites W3019251610 @default.
- W4301397966 cites W3023213286 @default.
- W4301397966 cites W3024610765 @default.
- W4301397966 cites W3091450960 @default.
- W4301397966 cites W3108680670 @default.
- W4301397966 cites W3112756409 @default.
- W4301397966 cites W3125999336 @default.
- W4301397966 cites W3130808753 @default.
- W4301397966 cites W3189501841 @default.
- W4301397966 cites W3196636665 @default.
- W4301397966 cites W3200304500 @default.
- W4301397966 doi "https://doi.org/10.1016/j.renene.2022.09.114" @default.
- W4301397966 hasPublicationYear "2022" @default.
- W4301397966 type Work @default.
- W4301397966 citedByCount "20" @default.
- W4301397966 countsByYear W43013979662022 @default.
- W4301397966 countsByYear W43013979662023 @default.
- W4301397966 crossrefType "journal-article" @default.
- W4301397966 hasAuthorship W4301397966A5026108247 @default.
- W4301397966 hasAuthorship W4301397966A5054897087 @default.
- W4301397966 hasAuthorship W4301397966A5055356487 @default.
- W4301397966 hasAuthorship W4301397966A5061063513 @default.
- W4301397966 hasAuthorship W4301397966A5077347513 @default.
- W4301397966 hasAuthorship W4301397966A5090197240 @default.
- W4301397966 hasAuthorship W4301397966A5091546389 @default.
- W4301397966 hasConcept C10551718 @default.
- W4301397966 hasConcept C106131492 @default.
- W4301397966 hasConcept C111919701 @default.
- W4301397966 hasConcept C119599485 @default.
- W4301397966 hasConcept C119857082 @default.
- W4301397966 hasConcept C121332964 @default.
- W4301397966 hasConcept C127413603 @default.
- W4301397966 hasConcept C147168706 @default.
- W4301397966 hasConcept C151406439 @default.
- W4301397966 hasConcept C153294291 @default.
- W4301397966 hasConcept C154945302 @default.
- W4301397966 hasConcept C161067210 @default.
- W4301397966 hasConcept C25570617 @default.
- W4301397966 hasConcept C31972630 @default.
- W4301397966 hasConcept C41008148 @default.
- W4301397966 hasConcept C48677424 @default.
- W4301397966 hasConcept C48921125 @default.
- W4301397966 hasConcept C50644808 @default.
- W4301397966 hasConcept C78600449 @default.
- W4301397966 hasConcept C81363708 @default.
- W4301397966 hasConceptScore W4301397966C10551718 @default.