Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301398198> ?p ?o ?g. }
- W4301398198 endingPage "112006" @default.
- W4301398198 startingPage "112006" @default.
- W4301398198 abstract "This study presents a novel dynamic real-time reliability prediction method by considering the time-varying correlation among the data at multiple measurement points. The Bayesian Hilbert dynamic linear model (BHDLM) is developed to predict the stress response, and the dynamic real-time reliability is then predicted by using the Pair-Copula theory. To illustrate the feasibility of the proposed method, the dynamic real-time reliability of a steel–concrete composite girder bridge based on the simulated stress data due to a single vehicle with various weights and random traffic flow load is predicted. Finally, the dynamic reliability of a real bridge based on the monitoring stress data is predicted. The results show that the proposed BHDLM is effective for predicting coupled stresses, and the dynamic real-time reliability can be predicted. In addition, the predicted dynamic reliability of the real bridge demonstrates that the influence of the data correlation should be considered." @default.
- W4301398198 created "2022-10-05" @default.
- W4301398198 creator A5001808972 @default.
- W4301398198 creator A5010632162 @default.
- W4301398198 creator A5027778734 @default.
- W4301398198 creator A5053892310 @default.
- W4301398198 creator A5055488917 @default.
- W4301398198 date "2022-11-01" @default.
- W4301398198 modified "2023-09-30" @default.
- W4301398198 title "Dynamic real-time reliability prediction of bridge structures based on Copula–BHDLM and measured stress data" @default.
- W4301398198 cites W2276869668 @default.
- W4301398198 cites W2342259540 @default.
- W4301398198 cites W2427842606 @default.
- W4301398198 cites W2751068537 @default.
- W4301398198 cites W2774410695 @default.
- W4301398198 cites W2785232536 @default.
- W4301398198 cites W2792675839 @default.
- W4301398198 cites W2810717418 @default.
- W4301398198 cites W2893334831 @default.
- W4301398198 cites W2910683773 @default.
- W4301398198 cites W2912173994 @default.
- W4301398198 cites W2913925832 @default.
- W4301398198 cites W2918005232 @default.
- W4301398198 cites W2920810181 @default.
- W4301398198 cites W2944787403 @default.
- W4301398198 cites W2947937648 @default.
- W4301398198 cites W2966609813 @default.
- W4301398198 cites W2968368194 @default.
- W4301398198 cites W2976480428 @default.
- W4301398198 cites W2989875128 @default.
- W4301398198 cites W3004553556 @default.
- W4301398198 cites W3005650655 @default.
- W4301398198 cites W3006443064 @default.
- W4301398198 cites W3007419196 @default.
- W4301398198 cites W3022914082 @default.
- W4301398198 cites W3035355910 @default.
- W4301398198 cites W3036441173 @default.
- W4301398198 cites W3040044013 @default.
- W4301398198 cites W3045740496 @default.
- W4301398198 cites W3095719049 @default.
- W4301398198 cites W3111367942 @default.
- W4301398198 cites W3131698473 @default.
- W4301398198 cites W3136614188 @default.
- W4301398198 cites W3158929085 @default.
- W4301398198 cites W3159169556 @default.
- W4301398198 cites W3165805998 @default.
- W4301398198 cites W3206923989 @default.
- W4301398198 cites W3213676168 @default.
- W4301398198 cites W4200433200 @default.
- W4301398198 cites W4200609603 @default.
- W4301398198 cites W4205316932 @default.
- W4301398198 cites W4226021306 @default.
- W4301398198 doi "https://doi.org/10.1016/j.measurement.2022.112006" @default.
- W4301398198 hasPublicationYear "2022" @default.
- W4301398198 type Work @default.
- W4301398198 citedByCount "1" @default.
- W4301398198 countsByYear W43013981982023 @default.
- W4301398198 crossrefType "journal-article" @default.
- W4301398198 hasAuthorship W4301398198A5001808972 @default.
- W4301398198 hasAuthorship W4301398198A5010632162 @default.
- W4301398198 hasAuthorship W4301398198A5027778734 @default.
- W4301398198 hasAuthorship W4301398198A5053892310 @default.
- W4301398198 hasAuthorship W4301398198A5055488917 @default.
- W4301398198 hasConcept C100776233 @default.
- W4301398198 hasConcept C107673813 @default.
- W4301398198 hasConcept C121332964 @default.
- W4301398198 hasConcept C126322002 @default.
- W4301398198 hasConcept C127413603 @default.
- W4301398198 hasConcept C149782125 @default.
- W4301398198 hasConcept C154945302 @default.
- W4301398198 hasConcept C163258240 @default.
- W4301398198 hasConcept C17618745 @default.
- W4301398198 hasConcept C200601418 @default.
- W4301398198 hasConcept C33923547 @default.
- W4301398198 hasConcept C41008148 @default.
- W4301398198 hasConcept C43214815 @default.
- W4301398198 hasConcept C62520636 @default.
- W4301398198 hasConcept C71924100 @default.
- W4301398198 hasConcept C82142266 @default.
- W4301398198 hasConceptScore W4301398198C100776233 @default.
- W4301398198 hasConceptScore W4301398198C107673813 @default.
- W4301398198 hasConceptScore W4301398198C121332964 @default.
- W4301398198 hasConceptScore W4301398198C126322002 @default.
- W4301398198 hasConceptScore W4301398198C127413603 @default.
- W4301398198 hasConceptScore W4301398198C149782125 @default.
- W4301398198 hasConceptScore W4301398198C154945302 @default.
- W4301398198 hasConceptScore W4301398198C163258240 @default.
- W4301398198 hasConceptScore W4301398198C17618745 @default.
- W4301398198 hasConceptScore W4301398198C200601418 @default.
- W4301398198 hasConceptScore W4301398198C33923547 @default.
- W4301398198 hasConceptScore W4301398198C41008148 @default.
- W4301398198 hasConceptScore W4301398198C43214815 @default.
- W4301398198 hasConceptScore W4301398198C62520636 @default.
- W4301398198 hasConceptScore W4301398198C71924100 @default.
- W4301398198 hasConceptScore W4301398198C82142266 @default.
- W4301398198 hasFunder F4320321001 @default.
- W4301398198 hasFunder F4320328119 @default.
- W4301398198 hasFunder F4320335787 @default.