Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301479967> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4301479967 abstract "The Larson-Sweedler theorem says that a finite-dimensional bialgebra with a faithful integral is a Hopf algebra. The result has been generalized to finite-dimensional weak Hopf algebras by Vecserny'es. In this paper, we show that the result is still true for weak multiplier Hopf algebras. The notion of a weak multiplier bialgebra was introduced by Bohm, G'omez-Torrecillas and L'opez-Centella. In this note it is shown that a weak multiplier bialgebra with a regular and full coproduct is a regular weak multiplier Hopf algebra if there is a faithful set of integrals. This result is important for the development of the theory of locally compact quantum groupoids in the operator algebra setting. Our treatment of this material is motivated by the prospect of such a theory." @default.
- W4301479967 created "2022-10-05" @default.
- W4301479967 creator A5027202272 @default.
- W4301479967 creator A5047570997 @default.
- W4301479967 date "2014-06-02" @default.
- W4301479967 modified "2023-09-27" @default.
- W4301479967 title "The Larson-Sweedler theorem for weak multiplier Hopf algebras" @default.
- W4301479967 doi "https://doi.org/10.48550/arxiv.1406.0299" @default.
- W4301479967 hasPublicationYear "2014" @default.
- W4301479967 type Work @default.
- W4301479967 citedByCount "0" @default.
- W4301479967 crossrefType "posted-content" @default.
- W4301479967 hasAuthorship W4301479967A5027202272 @default.
- W4301479967 hasAuthorship W4301479967A5047570997 @default.
- W4301479967 hasBestOaLocation W43014799671 @default.
- W4301479967 hasConcept C118615104 @default.
- W4301479967 hasConcept C124584101 @default.
- W4301479967 hasConcept C130856480 @default.
- W4301479967 hasConcept C136119220 @default.
- W4301479967 hasConcept C138354692 @default.
- W4301479967 hasConcept C139719470 @default.
- W4301479967 hasConcept C162324750 @default.
- W4301479967 hasConcept C169171071 @default.
- W4301479967 hasConcept C202444582 @default.
- W4301479967 hasConcept C2778676360 @default.
- W4301479967 hasConcept C29712632 @default.
- W4301479967 hasConcept C33923547 @default.
- W4301479967 hasConcept C55192134 @default.
- W4301479967 hasConceptScore W4301479967C118615104 @default.
- W4301479967 hasConceptScore W4301479967C124584101 @default.
- W4301479967 hasConceptScore W4301479967C130856480 @default.
- W4301479967 hasConceptScore W4301479967C136119220 @default.
- W4301479967 hasConceptScore W4301479967C138354692 @default.
- W4301479967 hasConceptScore W4301479967C139719470 @default.
- W4301479967 hasConceptScore W4301479967C162324750 @default.
- W4301479967 hasConceptScore W4301479967C169171071 @default.
- W4301479967 hasConceptScore W4301479967C202444582 @default.
- W4301479967 hasConceptScore W4301479967C2778676360 @default.
- W4301479967 hasConceptScore W4301479967C29712632 @default.
- W4301479967 hasConceptScore W4301479967C33923547 @default.
- W4301479967 hasConceptScore W4301479967C55192134 @default.
- W4301479967 hasLocation W43014799671 @default.
- W4301479967 hasLocation W43014799672 @default.
- W4301479967 hasOpenAccess W4301479967 @default.
- W4301479967 hasPrimaryLocation W43014799671 @default.
- W4301479967 hasRelatedWork W1976435324 @default.
- W4301479967 hasRelatedWork W2042872942 @default.
- W4301479967 hasRelatedWork W2166445010 @default.
- W4301479967 hasRelatedWork W2183008699 @default.
- W4301479967 hasRelatedWork W2364172277 @default.
- W4301479967 hasRelatedWork W2384503709 @default.
- W4301479967 hasRelatedWork W2391350413 @default.
- W4301479967 hasRelatedWork W4256710784 @default.
- W4301479967 hasRelatedWork W4301479967 @default.
- W4301479967 hasRelatedWork W4302071058 @default.
- W4301479967 isParatext "false" @default.
- W4301479967 isRetracted "false" @default.
- W4301479967 workType "article" @default.