Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301490645> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4301490645 abstract "Let $G=(V,A)$ be a digraph. With every subset $X$ of $V$, we associate the subdigraph $G[X]=(X,Acap (Xtimes X))$ of $G$ induced by $X$. Given a positive integer $k$, a digraph $G$ is $(leq k)$-half-reconstructible if it is determined up to duality by its subdigraphs of cardinality $leq k$. In 2003, J. Dammak characterized the $(leq k)$-half-reconstructible finite digraphs, for $kin {7,8,9,10,11}$. N. El Amri, extended J. Dammak's characterization to infinite digraphs. In this paper, we characterize the $(leq 6)$-half-reconstructible infinite digraphs." @default.
- W4301490645 created "2022-10-05" @default.
- W4301490645 creator A5003272882 @default.
- W4301490645 creator A5073504833 @default.
- W4301490645 date "2013-11-07" @default.
- W4301490645 modified "2023-10-16" @default.
- W4301490645 title "The $(leq 6)$-half-reconstructibility of digraphs" @default.
- W4301490645 doi "https://doi.org/10.48550/arxiv.1311.1765" @default.
- W4301490645 hasPublicationYear "2013" @default.
- W4301490645 type Work @default.
- W4301490645 citedByCount "0" @default.
- W4301490645 crossrefType "posted-content" @default.
- W4301490645 hasAuthorship W4301490645A5003272882 @default.
- W4301490645 hasAuthorship W4301490645A5073504833 @default.
- W4301490645 hasBestOaLocation W43014906451 @default.
- W4301490645 hasConcept C114614502 @default.
- W4301490645 hasConcept C118615104 @default.
- W4301490645 hasConcept C120665830 @default.
- W4301490645 hasConcept C121332964 @default.
- W4301490645 hasConcept C124101348 @default.
- W4301490645 hasConcept C199360897 @default.
- W4301490645 hasConcept C2778023678 @default.
- W4301490645 hasConcept C2779145032 @default.
- W4301490645 hasConcept C2780841128 @default.
- W4301490645 hasConcept C33923547 @default.
- W4301490645 hasConcept C41008148 @default.
- W4301490645 hasConcept C87117476 @default.
- W4301490645 hasConcept C97137487 @default.
- W4301490645 hasConceptScore W4301490645C114614502 @default.
- W4301490645 hasConceptScore W4301490645C118615104 @default.
- W4301490645 hasConceptScore W4301490645C120665830 @default.
- W4301490645 hasConceptScore W4301490645C121332964 @default.
- W4301490645 hasConceptScore W4301490645C124101348 @default.
- W4301490645 hasConceptScore W4301490645C199360897 @default.
- W4301490645 hasConceptScore W4301490645C2778023678 @default.
- W4301490645 hasConceptScore W4301490645C2779145032 @default.
- W4301490645 hasConceptScore W4301490645C2780841128 @default.
- W4301490645 hasConceptScore W4301490645C33923547 @default.
- W4301490645 hasConceptScore W4301490645C41008148 @default.
- W4301490645 hasConceptScore W4301490645C87117476 @default.
- W4301490645 hasConceptScore W4301490645C97137487 @default.
- W4301490645 hasLocation W43014906451 @default.
- W4301490645 hasOpenAccess W4301490645 @default.
- W4301490645 hasPrimaryLocation W43014906451 @default.
- W4301490645 hasRelatedWork W1495507957 @default.
- W4301490645 hasRelatedWork W1966231938 @default.
- W4301490645 hasRelatedWork W2020592879 @default.
- W4301490645 hasRelatedWork W2031811693 @default.
- W4301490645 hasRelatedWork W2043162283 @default.
- W4301490645 hasRelatedWork W2055579046 @default.
- W4301490645 hasRelatedWork W2080188430 @default.
- W4301490645 hasRelatedWork W2771742342 @default.
- W4301490645 hasRelatedWork W4244422804 @default.
- W4301490645 hasRelatedWork W4295094626 @default.
- W4301490645 isParatext "false" @default.
- W4301490645 isRetracted "false" @default.
- W4301490645 workType "article" @default.