Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301495211> ?p ?o ?g. }
- W4301495211 endingPage "222" @default.
- W4301495211 startingPage "203" @default.
- W4301495211 abstract "Machine learning currently represents the cornerstone of modern artificial intelligence. The algorithms involved have rapidly permeated into medical sciences and have demonstrated the capacity to revolutionize data analysis through optimized variable exploration and integration as well as improved image processing and recognition. As such, cardiovascular hybrid imaging constitutes an open pathway for implementation in the form of view identification, structure segmentation, disease identification, functional parameter estimation, and prognostic evaluation in its traditional forms in SPECT/CT, PET/CT, and PET/MR. Further, an elastic view of the concept of hybridization in cardiovascular imaging offers the possibility to concatenate applications based on the combination of machine learning models, data types, and imaging modalities. Current aims for these implementations include process automation and the generation of clinical decision support systems tailored to the needs of daily clinical practice in the evaluation of cardiovascular disease at the individual level. This chapter summarizes core concepts in modern machine learning-based AI, provides an overview of the recent advances in data processing, image analysis, result in interpretation and emerging clinical implementations, and suggests the potential and future perspectives of machine learning analytics within the context of hybrid cardiovascular imaging." @default.
- W4301495211 created "2022-10-05" @default.
- W4301495211 creator A5017052604 @default.
- W4301495211 creator A5018149893 @default.
- W4301495211 creator A5024849147 @default.
- W4301495211 creator A5051080002 @default.
- W4301495211 creator A5072175218 @default.
- W4301495211 creator A5074009794 @default.
- W4301495211 date "2022-01-01" @default.
- W4301495211 modified "2023-10-06" @default.
- W4301495211 title "Hybrid Cardiac Imaging: The Role of Machine Learning and Artificial Intelligence" @default.
- W4301495211 cites W1901129140 @default.
- W4301495211 cites W2022495797 @default.
- W4301495211 cites W2095680098 @default.
- W4301495211 cites W2168079975 @default.
- W4301495211 cites W2173720170 @default.
- W4301495211 cites W2194775991 @default.
- W4301495211 cites W2335916523 @default.
- W4301495211 cites W2345003174 @default.
- W4301495211 cites W2510038462 @default.
- W4301495211 cites W2536966079 @default.
- W4301495211 cites W2546515803 @default.
- W4301495211 cites W2547249464 @default.
- W4301495211 cites W2548617625 @default.
- W4301495211 cites W2581082771 @default.
- W4301495211 cites W2611367247 @default.
- W4301495211 cites W2729145866 @default.
- W4301495211 cites W2743884031 @default.
- W4301495211 cites W2754132686 @default.
- W4301495211 cites W2765669952 @default.
- W4301495211 cites W2766329790 @default.
- W4301495211 cites W2769042349 @default.
- W4301495211 cites W2786147899 @default.
- W4301495211 cites W2787620093 @default.
- W4301495211 cites W2789456193 @default.
- W4301495211 cites W2798237365 @default.
- W4301495211 cites W2803176574 @default.
- W4301495211 cites W2804881694 @default.
- W4301495211 cites W2807965844 @default.
- W4301495211 cites W2810924391 @default.
- W4301495211 cites W2886857600 @default.
- W4301495211 cites W2887717038 @default.
- W4301495211 cites W2892924241 @default.
- W4301495211 cites W2896287590 @default.
- W4301495211 cites W2899314245 @default.
- W4301495211 cites W2907190488 @default.
- W4301495211 cites W2912267694 @default.
- W4301495211 cites W2918683414 @default.
- W4301495211 cites W2924551358 @default.
- W4301495211 cites W2944775438 @default.
- W4301495211 cites W2949422409 @default.
- W4301495211 cites W2949687197 @default.
- W4301495211 cites W2956767972 @default.
- W4301495211 cites W2963536842 @default.
- W4301495211 cites W2979966119 @default.
- W4301495211 cites W2980097659 @default.
- W4301495211 cites W2997586885 @default.
- W4301495211 cites W3004894558 @default.
- W4301495211 cites W3005001329 @default.
- W4301495211 cites W3005451155 @default.
- W4301495211 cites W3012956770 @default.
- W4301495211 cites W3014176505 @default.
- W4301495211 cites W3014706714 @default.
- W4301495211 cites W3021409554 @default.
- W4301495211 cites W3099933016 @default.
- W4301495211 cites W4235471633 @default.
- W4301495211 cites W4244821078 @default.
- W4301495211 doi "https://doi.org/10.1007/978-3-030-99391-7_12" @default.
- W4301495211 hasPublicationYear "2022" @default.
- W4301495211 type Work @default.
- W4301495211 citedByCount "0" @default.
- W4301495211 crossrefType "book-chapter" @default.
- W4301495211 hasAuthorship W4301495211A5017052604 @default.
- W4301495211 hasAuthorship W4301495211A5018149893 @default.
- W4301495211 hasAuthorship W4301495211A5024849147 @default.
- W4301495211 hasAuthorship W4301495211A5051080002 @default.
- W4301495211 hasAuthorship W4301495211A5072175218 @default.
- W4301495211 hasAuthorship W4301495211A5074009794 @default.
- W4301495211 hasBestOaLocation W43014952112 @default.
- W4301495211 hasConcept C115903868 @default.
- W4301495211 hasConcept C116834253 @default.
- W4301495211 hasConcept C119857082 @default.
- W4301495211 hasConcept C144024400 @default.
- W4301495211 hasConcept C151730666 @default.
- W4301495211 hasConcept C154945302 @default.
- W4301495211 hasConcept C2522767166 @default.
- W4301495211 hasConcept C26713055 @default.
- W4301495211 hasConcept C2779343474 @default.
- W4301495211 hasConcept C2779903281 @default.
- W4301495211 hasConcept C31601959 @default.
- W4301495211 hasConcept C36289849 @default.
- W4301495211 hasConcept C41008148 @default.
- W4301495211 hasConcept C59822182 @default.
- W4301495211 hasConcept C79158427 @default.
- W4301495211 hasConcept C86803240 @default.
- W4301495211 hasConceptScore W4301495211C115903868 @default.
- W4301495211 hasConceptScore W4301495211C116834253 @default.
- W4301495211 hasConceptScore W4301495211C119857082 @default.