Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301665680> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4301665680 abstract "We propose the use of deep neural networks (DNN) for solving the problem of inferring the position and relevant properties of lanes of urban roads with poor or absent horizontal signalization, in order to allow the operation of autonomous cars in such situations. We take a segmentation approach to the problem and use the Efficient Neural Network (ENet) DNN for segmenting LiDAR remission grid maps into road maps. We represent road maps using what we called road grid maps. Road grid maps are square matrixes and each element of these matrixes represents a small square region of real-world space. The value of each element is a code associated with the semantics of the road map. Our road grid maps contain all information about the roads' lanes required for building the Road Definition Data Files (RDDFs) that are necessary for the operation of our autonomous car, IARA (Intelligent Autonomous Robotic Automobile). We have built a dataset of tens of kilometers of manually marked road lanes and used part of it to train ENet to segment road grid maps from remission grid maps. After being trained, ENet achieved an average segmentation accuracy of 83.7%. We have tested the use of inferred road grid maps in the real world using IARA on a stretch of 3.7 km of urban roads and it has shown performance equivalent to that of the previous IARA's subsystem that uses a manually generated RDDF." @default.
- W4301665680 created "2022-10-05" @default.
- W4301665680 creator A5028808604 @default.
- W4301665680 creator A5029154156 @default.
- W4301665680 creator A5032849839 @default.
- W4301665680 creator A5035595217 @default.
- W4301665680 creator A5048196131 @default.
- W4301665680 creator A5055682951 @default.
- W4301665680 creator A5056260430 @default.
- W4301665680 date "2018-04-27" @default.
- W4301665680 modified "2023-09-26" @default.
- W4301665680 title "Mapping Road Lanes Using Laser Remission and Deep Neural Networks" @default.
- W4301665680 doi "https://doi.org/10.48550/arxiv.1804.10662" @default.
- W4301665680 hasPublicationYear "2018" @default.
- W4301665680 type Work @default.
- W4301665680 citedByCount "0" @default.
- W4301665680 crossrefType "posted-content" @default.
- W4301665680 hasAuthorship W4301665680A5028808604 @default.
- W4301665680 hasAuthorship W4301665680A5029154156 @default.
- W4301665680 hasAuthorship W4301665680A5032849839 @default.
- W4301665680 hasAuthorship W4301665680A5035595217 @default.
- W4301665680 hasAuthorship W4301665680A5048196131 @default.
- W4301665680 hasAuthorship W4301665680A5055682951 @default.
- W4301665680 hasAuthorship W4301665680A5056260430 @default.
- W4301665680 hasBestOaLocation W43016656801 @default.
- W4301665680 hasConcept C10138342 @default.
- W4301665680 hasConcept C124101348 @default.
- W4301665680 hasConcept C13280743 @default.
- W4301665680 hasConcept C154945302 @default.
- W4301665680 hasConcept C156172958 @default.
- W4301665680 hasConcept C162324750 @default.
- W4301665680 hasConcept C187691185 @default.
- W4301665680 hasConcept C198082294 @default.
- W4301665680 hasConcept C19966478 @default.
- W4301665680 hasConcept C205649164 @default.
- W4301665680 hasConcept C31972630 @default.
- W4301665680 hasConcept C41008148 @default.
- W4301665680 hasConcept C50644808 @default.
- W4301665680 hasConcept C51399673 @default.
- W4301665680 hasConcept C58640448 @default.
- W4301665680 hasConcept C62649853 @default.
- W4301665680 hasConcept C89600930 @default.
- W4301665680 hasConcept C90509273 @default.
- W4301665680 hasConceptScore W4301665680C10138342 @default.
- W4301665680 hasConceptScore W4301665680C124101348 @default.
- W4301665680 hasConceptScore W4301665680C13280743 @default.
- W4301665680 hasConceptScore W4301665680C154945302 @default.
- W4301665680 hasConceptScore W4301665680C156172958 @default.
- W4301665680 hasConceptScore W4301665680C162324750 @default.
- W4301665680 hasConceptScore W4301665680C187691185 @default.
- W4301665680 hasConceptScore W4301665680C198082294 @default.
- W4301665680 hasConceptScore W4301665680C19966478 @default.
- W4301665680 hasConceptScore W4301665680C205649164 @default.
- W4301665680 hasConceptScore W4301665680C31972630 @default.
- W4301665680 hasConceptScore W4301665680C41008148 @default.
- W4301665680 hasConceptScore W4301665680C50644808 @default.
- W4301665680 hasConceptScore W4301665680C51399673 @default.
- W4301665680 hasConceptScore W4301665680C58640448 @default.
- W4301665680 hasConceptScore W4301665680C62649853 @default.
- W4301665680 hasConceptScore W4301665680C89600930 @default.
- W4301665680 hasConceptScore W4301665680C90509273 @default.
- W4301665680 hasLocation W43016656801 @default.
- W4301665680 hasLocation W43016656802 @default.
- W4301665680 hasOpenAccess W4301665680 @default.
- W4301665680 hasPrimaryLocation W43016656801 @default.
- W4301665680 hasRelatedWork W1669643531 @default.
- W4301665680 hasRelatedWork W2005437358 @default.
- W4301665680 hasRelatedWork W2008656436 @default.
- W4301665680 hasRelatedWork W2023558673 @default.
- W4301665680 hasRelatedWork W2039154422 @default.
- W4301665680 hasRelatedWork W2122581818 @default.
- W4301665680 hasRelatedWork W2134924024 @default.
- W4301665680 hasRelatedWork W2517104666 @default.
- W4301665680 hasRelatedWork W3160189929 @default.
- W4301665680 hasRelatedWork W2182382398 @default.
- W4301665680 isParatext "false" @default.
- W4301665680 isRetracted "false" @default.
- W4301665680 workType "article" @default.