Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301673467> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4301673467 abstract "We consider a class of Schrodinger equations with time-dependent smooth magnetic and electric potentials having a growth at infinity at most linear and quadratic, respectively. We study the convergence in $L^p$ with loss of derivatives, $1<p<infty$, of the time slicing approximations of the corresponding Feynman path integral. The results are completely sharp and hold for long time, where no smoothing effect is available. The techniques are based on the decomposition and reconstruction of functions and operators with respect to certain wave packets in phase space." @default.
- W4301673467 created "2022-10-05" @default.
- W4301673467 creator A5016611645 @default.
- W4301673467 date "2015-03-19" @default.
- W4301673467 modified "2023-09-30" @default.
- W4301673467 title "Convergence in $L^p$ for Feynman path integrals" @default.
- W4301673467 doi "https://doi.org/10.48550/arxiv.1503.05863" @default.
- W4301673467 hasPublicationYear "2015" @default.
- W4301673467 type Work @default.
- W4301673467 citedByCount "0" @default.
- W4301673467 crossrefType "posted-content" @default.
- W4301673467 hasAuthorship W4301673467A5016611645 @default.
- W4301673467 hasBestOaLocation W43016734671 @default.
- W4301673467 hasConcept C105795698 @default.
- W4301673467 hasConcept C121332964 @default.
- W4301673467 hasConcept C129844170 @default.
- W4301673467 hasConcept C134306372 @default.
- W4301673467 hasConcept C154018700 @default.
- W4301673467 hasConcept C162324750 @default.
- W4301673467 hasConcept C195956108 @default.
- W4301673467 hasConcept C2524010 @default.
- W4301673467 hasConcept C2777303404 @default.
- W4301673467 hasConcept C28826006 @default.
- W4301673467 hasConcept C33923547 @default.
- W4301673467 hasConcept C3770464 @default.
- W4301673467 hasConcept C37914503 @default.
- W4301673467 hasConcept C50522688 @default.
- W4301673467 hasConcept C62520636 @default.
- W4301673467 hasConcept C63036615 @default.
- W4301673467 hasConcept C65574998 @default.
- W4301673467 hasConcept C84114770 @default.
- W4301673467 hasConceptScore W4301673467C105795698 @default.
- W4301673467 hasConceptScore W4301673467C121332964 @default.
- W4301673467 hasConceptScore W4301673467C129844170 @default.
- W4301673467 hasConceptScore W4301673467C134306372 @default.
- W4301673467 hasConceptScore W4301673467C154018700 @default.
- W4301673467 hasConceptScore W4301673467C162324750 @default.
- W4301673467 hasConceptScore W4301673467C195956108 @default.
- W4301673467 hasConceptScore W4301673467C2524010 @default.
- W4301673467 hasConceptScore W4301673467C2777303404 @default.
- W4301673467 hasConceptScore W4301673467C28826006 @default.
- W4301673467 hasConceptScore W4301673467C33923547 @default.
- W4301673467 hasConceptScore W4301673467C3770464 @default.
- W4301673467 hasConceptScore W4301673467C37914503 @default.
- W4301673467 hasConceptScore W4301673467C50522688 @default.
- W4301673467 hasConceptScore W4301673467C62520636 @default.
- W4301673467 hasConceptScore W4301673467C63036615 @default.
- W4301673467 hasConceptScore W4301673467C65574998 @default.
- W4301673467 hasConceptScore W4301673467C84114770 @default.
- W4301673467 hasLocation W43016734671 @default.
- W4301673467 hasOpenAccess W4301673467 @default.
- W4301673467 hasPrimaryLocation W43016734671 @default.
- W4301673467 hasRelatedWork W1971197536 @default.
- W4301673467 hasRelatedWork W2007401997 @default.
- W4301673467 hasRelatedWork W2049392341 @default.
- W4301673467 hasRelatedWork W2078346421 @default.
- W4301673467 hasRelatedWork W2090824238 @default.
- W4301673467 hasRelatedWork W2362258581 @default.
- W4301673467 hasRelatedWork W2500134170 @default.
- W4301673467 hasRelatedWork W2950041500 @default.
- W4301673467 hasRelatedWork W3134327604 @default.
- W4301673467 hasRelatedWork W957649985 @default.
- W4301673467 isParatext "false" @default.
- W4301673467 isRetracted "false" @default.
- W4301673467 workType "article" @default.