Matches in SemOpenAlex for { <https://semopenalex.org/work/W4301744211> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4301744211 abstract "Let $dgeq 3$ be fixed and $G$ be a large random $d$-regular graph on $n$ vertices. We show that if $n$ is large enough then the entry distribution of every almost eigenvector $v$ of $G$ (with entry sum 0 and normalized to have length $sqrt{n}$) is close to some Gaussian distribution $N(0,sigma)$ in the weak topology where $0leqsigmaleq 1$. Our theorem holds even in the stronger sense when many entries are looked at simultaneously in small random neighborhoods of the graph. Furthermore, we also get the Gaussianity of the joint distribution of several almost eigenvectors if the corresponding eigenvalues are close. Our proof uses graph limits and information theory. Our results have consequences for factor of i.i.d. processes on the infinite regular tree." @default.
- W4301744211 created "2022-10-05" @default.
- W4301744211 creator A5021222112 @default.
- W4301744211 creator A5090841280 @default.
- W4301744211 date "2016-07-16" @default.
- W4301744211 modified "2023-09-30" @default.
- W4301744211 title "On the almost eigenvectors of random regular graphs" @default.
- W4301744211 doi "https://doi.org/10.48550/arxiv.1607.04785" @default.
- W4301744211 hasPublicationYear "2016" @default.
- W4301744211 type Work @default.
- W4301744211 citedByCount "0" @default.
- W4301744211 crossrefType "posted-content" @default.
- W4301744211 hasAuthorship W4301744211A5021222112 @default.
- W4301744211 hasAuthorship W4301744211A5090841280 @default.
- W4301744211 hasBestOaLocation W43017442111 @default.
- W4301744211 hasConcept C110121322 @default.
- W4301744211 hasConcept C113174947 @default.
- W4301744211 hasConcept C114614502 @default.
- W4301744211 hasConcept C118615104 @default.
- W4301744211 hasConcept C121332964 @default.
- W4301744211 hasConcept C132525143 @default.
- W4301744211 hasConcept C134306372 @default.
- W4301744211 hasConcept C158693339 @default.
- W4301744211 hasConcept C163716315 @default.
- W4301744211 hasConcept C2778049214 @default.
- W4301744211 hasConcept C33923547 @default.
- W4301744211 hasConcept C47458327 @default.
- W4301744211 hasConcept C62520636 @default.
- W4301744211 hasConceptScore W4301744211C110121322 @default.
- W4301744211 hasConceptScore W4301744211C113174947 @default.
- W4301744211 hasConceptScore W4301744211C114614502 @default.
- W4301744211 hasConceptScore W4301744211C118615104 @default.
- W4301744211 hasConceptScore W4301744211C121332964 @default.
- W4301744211 hasConceptScore W4301744211C132525143 @default.
- W4301744211 hasConceptScore W4301744211C134306372 @default.
- W4301744211 hasConceptScore W4301744211C158693339 @default.
- W4301744211 hasConceptScore W4301744211C163716315 @default.
- W4301744211 hasConceptScore W4301744211C2778049214 @default.
- W4301744211 hasConceptScore W4301744211C33923547 @default.
- W4301744211 hasConceptScore W4301744211C47458327 @default.
- W4301744211 hasConceptScore W4301744211C62520636 @default.
- W4301744211 hasLocation W43017442111 @default.
- W4301744211 hasLocation W43017442112 @default.
- W4301744211 hasLocation W43017442113 @default.
- W4301744211 hasOpenAccess W4301744211 @default.
- W4301744211 hasPrimaryLocation W43017442111 @default.
- W4301744211 hasRelatedWork W1994148577 @default.
- W4301744211 hasRelatedWork W1998083236 @default.
- W4301744211 hasRelatedWork W2029938155 @default.
- W4301744211 hasRelatedWork W2063722065 @default.
- W4301744211 hasRelatedWork W2187055990 @default.
- W4301744211 hasRelatedWork W2191376159 @default.
- W4301744211 hasRelatedWork W2962779128 @default.
- W4301744211 hasRelatedWork W3003396734 @default.
- W4301744211 hasRelatedWork W3135762022 @default.
- W4301744211 hasRelatedWork W2133985202 @default.
- W4301744211 isParatext "false" @default.
- W4301744211 isRetracted "false" @default.
- W4301744211 workType "article" @default.