Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302009672> ?p ?o ?g. }
- W4302009672 endingPage "128501" @default.
- W4302009672 startingPage "128501" @default.
- W4302009672 abstract "This paper aims to review parameters, model techniques, validation methods in groundwater potential field. According to statistics, there are three major model groups used to establish groundwater potential maps. The first model group is a statistic group, including multi-criteria decision making/analytic hierarchy process, frequency ratio, evidence belief function, and weights of evidence. The second model group includes machine learning models, such as random forest, logistic regression, boosted regression tree, and support vector machine. The final group is the hybrid/ensemble models. In groundwater potential mapping studies, 41 thematic layers affect the potential of groundwater. However, hydrological researchers have frequently used eight factors in groundwater potential studies: geology, slope, land use, soil type, drainage density, lineament density, altitude, rainfall. Most previous studies on groundwater potential have used a combination of geographic information system, remote sensing, and machine learning techniques to design the groundwater potential in regions of interest. Data sources are commonly applied to groundwater potential mapping, including satellite, borehole, and geophysical data. The accuracy of groundwater potential maps produced by common machine learning models ranges from 50.0% to 90.1%, while that produced by common statistical models ranges between 59.0% and 90.3%. Interestingly, hybrid/ensemble models’ accuracy interval ranges from 71.0% to 92.0%. Therefore, the review suggests that statistical algorithms and machine learning techniques should be combined, and thematic layers should be increasingly used in mapping groundwater potential maps to achieve high efficiency." @default.
- W4302009672 created "2022-10-06" @default.
- W4302009672 creator A5026898742 @default.
- W4302009672 creator A5034893699 @default.
- W4302009672 creator A5048373136 @default.
- W4302009672 creator A5050265775 @default.
- W4302009672 date "2022-11-01" @default.
- W4302009672 modified "2023-10-01" @default.
- W4302009672 title "Global review of groundwater potential models in the last decade: Parameters, model techniques, and validation" @default.
- W4302009672 cites W1192997862 @default.
- W4302009672 cites W1515230668 @default.
- W4302009672 cites W1523135258 @default.
- W4302009672 cites W1556201293 @default.
- W4302009672 cites W1575826846 @default.
- W4302009672 cites W1786226516 @default.
- W4302009672 cites W1826392439 @default.
- W4302009672 cites W1850312594 @default.
- W4302009672 cites W1963921604 @default.
- W4302009672 cites W1964997367 @default.
- W4302009672 cites W1965139709 @default.
- W4302009672 cites W1965920041 @default.
- W4302009672 cites W1966509971 @default.
- W4302009672 cites W1967176151 @default.
- W4302009672 cites W1971268181 @default.
- W4302009672 cites W1973353055 @default.
- W4302009672 cites W1973625526 @default.
- W4302009672 cites W1975868431 @default.
- W4302009672 cites W1977085977 @default.
- W4302009672 cites W1978134044 @default.
- W4302009672 cites W1980092578 @default.
- W4302009672 cites W1985288162 @default.
- W4302009672 cites W1989319038 @default.
- W4302009672 cites W1989403950 @default.
- W4302009672 cites W1990716986 @default.
- W4302009672 cites W1995751710 @default.
- W4302009672 cites W2001901329 @default.
- W4302009672 cites W2002271711 @default.
- W4302009672 cites W2005348436 @default.
- W4302009672 cites W2008681206 @default.
- W4302009672 cites W2010775148 @default.
- W4302009672 cites W2012949826 @default.
- W4302009672 cites W2013341039 @default.
- W4302009672 cites W2013558387 @default.
- W4302009672 cites W2014473500 @default.
- W4302009672 cites W2017107127 @default.
- W4302009672 cites W2020010421 @default.
- W4302009672 cites W2020938238 @default.
- W4302009672 cites W2026294281 @default.
- W4302009672 cites W2026931581 @default.
- W4302009672 cites W2038913727 @default.
- W4302009672 cites W2042155479 @default.
- W4302009672 cites W2043561677 @default.
- W4302009672 cites W2046827489 @default.
- W4302009672 cites W2046999989 @default.
- W4302009672 cites W2049014806 @default.
- W4302009672 cites W2049703372 @default.
- W4302009672 cites W2053900154 @default.
- W4302009672 cites W2054423799 @default.
- W4302009672 cites W2055338402 @default.
- W4302009672 cites W2055651183 @default.
- W4302009672 cites W2055720780 @default.
- W4302009672 cites W2056010530 @default.
- W4302009672 cites W2057388082 @default.
- W4302009672 cites W2064205885 @default.
- W4302009672 cites W2065600529 @default.
- W4302009672 cites W2066203025 @default.
- W4302009672 cites W2067511707 @default.
- W4302009672 cites W2070271130 @default.
- W4302009672 cites W2080979633 @default.
- W4302009672 cites W2081471732 @default.
- W4302009672 cites W2092489948 @default.
- W4302009672 cites W2092803767 @default.
- W4302009672 cites W2108946099 @default.
- W4302009672 cites W2118707522 @default.
- W4302009672 cites W2127267696 @default.
- W4302009672 cites W2129313630 @default.
- W4302009672 cites W2133716002 @default.
- W4302009672 cites W2164364925 @default.
- W4302009672 cites W2169245074 @default.
- W4302009672 cites W2170804126 @default.
- W4302009672 cites W2178998297 @default.
- W4302009672 cites W2192928170 @default.
- W4302009672 cites W2208293910 @default.
- W4302009672 cites W2223472243 @default.
- W4302009672 cites W2224996532 @default.
- W4302009672 cites W2245970762 @default.
- W4302009672 cites W2278830514 @default.
- W4302009672 cites W2286308337 @default.
- W4302009672 cites W2294251534 @default.
- W4302009672 cites W2302736411 @default.
- W4302009672 cites W2316026498 @default.
- W4302009672 cites W2392991992 @default.
- W4302009672 cites W2461675021 @default.
- W4302009672 cites W2465954037 @default.
- W4302009672 cites W2508243463 @default.
- W4302009672 cites W2509754970 @default.
- W4302009672 cites W2519889046 @default.
- W4302009672 cites W2521201985 @default.