Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302016076> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4302016076 abstract "Abstract Key to most subsurface processes is to determine how structural and topological features at small length scales, i.e., the microstructure, control the effective and macroscopic properties of earth materials. Recent progress in imaging technology has enabled us to visualise and characterise microstructures at different length scales and dimensions. However, one limitation of these technologies is the trade-off between resolution and sample size (or representativeness). A promising approach to this problem is image reconstruction which aims to generate statistically equivalent microstructure but at a larger scale and/or additional dimension. In this work, a generative adversarial network (GAN), trained with Wasserstein-loss and gradient penalty, is used to reconstruct two-dimensional images of two hydrothermally rock samples with varying degrees of complexity. Moreover, we employ multi-point spatial correlation functions - known as statistical microstructural descriptors (SMDs) to evaluate the reconstruction performance of our GAN and show that it can reconstruct higher-order, spatially-correlated patterns of complex earth materials, capturing underlying structural and morphological properties. Comparing our results with a stochastic reconstruction method based on a two-point correlation function, we show the importance of coupling training/assessment of GANs with higher-order SMDs, especially in the case of complex microstructures." @default.
- W4302016076 created "2022-10-06" @default.
- W4302016076 creator A5036018701 @default.
- W4302016076 creator A5051053341 @default.
- W4302016076 creator A5062680093 @default.
- W4302016076 creator A5063326313 @default.
- W4302016076 creator A5070262005 @default.
- W4302016076 date "2022-10-05" @default.
- W4302016076 modified "2023-10-18" @default.
- W4302016076 title "Quantifying microstructures of Earth materials using higher-order spatial correlations and deep generative adversarial networks" @default.
- W4302016076 doi "https://doi.org/10.21203/rs.3.rs-2128261/v1" @default.
- W4302016076 hasPublicationYear "2022" @default.
- W4302016076 type Work @default.
- W4302016076 citedByCount "0" @default.
- W4302016076 crossrefType "posted-content" @default.
- W4302016076 hasAuthorship W4302016076A5036018701 @default.
- W4302016076 hasAuthorship W4302016076A5051053341 @default.
- W4302016076 hasAuthorship W4302016076A5062680093 @default.
- W4302016076 hasAuthorship W4302016076A5063326313 @default.
- W4302016076 hasAuthorship W4302016076A5070262005 @default.
- W4302016076 hasBestOaLocation W43020160761 @default.
- W4302016076 hasConcept C11413529 @default.
- W4302016076 hasConcept C121332964 @default.
- W4302016076 hasConcept C121864883 @default.
- W4302016076 hasConcept C127313418 @default.
- W4302016076 hasConcept C14036430 @default.
- W4302016076 hasConcept C150060386 @default.
- W4302016076 hasConcept C153180895 @default.
- W4302016076 hasConcept C154945302 @default.
- W4302016076 hasConcept C191897082 @default.
- W4302016076 hasConcept C192562407 @default.
- W4302016076 hasConcept C205649164 @default.
- W4302016076 hasConcept C2778755073 @default.
- W4302016076 hasConcept C39890363 @default.
- W4302016076 hasConcept C41008148 @default.
- W4302016076 hasConcept C58640448 @default.
- W4302016076 hasConcept C76155785 @default.
- W4302016076 hasConcept C78458016 @default.
- W4302016076 hasConcept C86803240 @default.
- W4302016076 hasConcept C87976508 @default.
- W4302016076 hasConceptScore W4302016076C11413529 @default.
- W4302016076 hasConceptScore W4302016076C121332964 @default.
- W4302016076 hasConceptScore W4302016076C121864883 @default.
- W4302016076 hasConceptScore W4302016076C127313418 @default.
- W4302016076 hasConceptScore W4302016076C14036430 @default.
- W4302016076 hasConceptScore W4302016076C150060386 @default.
- W4302016076 hasConceptScore W4302016076C153180895 @default.
- W4302016076 hasConceptScore W4302016076C154945302 @default.
- W4302016076 hasConceptScore W4302016076C191897082 @default.
- W4302016076 hasConceptScore W4302016076C192562407 @default.
- W4302016076 hasConceptScore W4302016076C205649164 @default.
- W4302016076 hasConceptScore W4302016076C2778755073 @default.
- W4302016076 hasConceptScore W4302016076C39890363 @default.
- W4302016076 hasConceptScore W4302016076C41008148 @default.
- W4302016076 hasConceptScore W4302016076C58640448 @default.
- W4302016076 hasConceptScore W4302016076C76155785 @default.
- W4302016076 hasConceptScore W4302016076C78458016 @default.
- W4302016076 hasConceptScore W4302016076C86803240 @default.
- W4302016076 hasConceptScore W4302016076C87976508 @default.
- W4302016076 hasLocation W43020160761 @default.
- W4302016076 hasLocation W43020160762 @default.
- W4302016076 hasOpenAccess W4302016076 @default.
- W4302016076 hasPrimaryLocation W43020160761 @default.
- W4302016076 hasRelatedWork W2058940780 @default.
- W4302016076 hasRelatedWork W2090404944 @default.
- W4302016076 hasRelatedWork W2274777013 @default.
- W4302016076 hasRelatedWork W2354424856 @default.
- W4302016076 hasRelatedWork W2357211366 @default.
- W4302016076 hasRelatedWork W2375093060 @default.
- W4302016076 hasRelatedWork W2392473810 @default.
- W4302016076 hasRelatedWork W2605776044 @default.
- W4302016076 hasRelatedWork W2803456621 @default.
- W4302016076 hasRelatedWork W3045762471 @default.
- W4302016076 isParatext "false" @default.
- W4302016076 isRetracted "false" @default.
- W4302016076 workType "article" @default.