Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302040896> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4302040896 abstract "Substantial technology advancements in the medicare industry have resulted in a slew of advances in therapeutic interventions, patient health assistance programmes, identifying trends in medical consequences, and so on. This also contributes to a plethora of information resources that can provide a range of forecasts on a lot of illnesses. The paper mentions technology advances in health sector, as well as the intricacy of systems and data quantities that may be utilized to make sophisticated clinical forecasts. It illustrates the opportunities that Big Data (BD) and Machine Learning (ML) might offer to this profession by employing a system that uses a Matlab/Simulink predictive model of a person’s health and AzureML to identify potential cardiac issues." @default.
- W4302040896 created "2022-10-06" @default.
- W4302040896 creator A5015924658 @default.
- W4302040896 creator A5025039072 @default.
- W4302040896 creator A5031264115 @default.
- W4302040896 creator A5032746007 @default.
- W4302040896 creator A5068245670 @default.
- W4302040896 date "2022-04-27" @default.
- W4302040896 modified "2023-09-26" @default.
- W4302040896 title "Leveraging Big Data and Machine Learning in Healthcare Systems for Disease Diagnosis" @default.
- W4302040896 cites W2583964134 @default.
- W4302040896 cites W2785781524 @default.
- W4302040896 cites W2786924777 @default.
- W4302040896 cites W2896195996 @default.
- W4302040896 cites W2896454345 @default.
- W4302040896 cites W2903716565 @default.
- W4302040896 cites W2907977528 @default.
- W4302040896 cites W2919154325 @default.
- W4302040896 cites W2940414764 @default.
- W4302040896 cites W2941992418 @default.
- W4302040896 cites W2947173902 @default.
- W4302040896 cites W2953421802 @default.
- W4302040896 cites W2970243285 @default.
- W4302040896 cites W2979991499 @default.
- W4302040896 cites W3004279327 @default.
- W4302040896 cites W3011527023 @default.
- W4302040896 cites W3019610134 @default.
- W4302040896 cites W3035908280 @default.
- W4302040896 cites W3089842843 @default.
- W4302040896 cites W3091604213 @default.
- W4302040896 cites W3109375702 @default.
- W4302040896 cites W3111529743 @default.
- W4302040896 cites W3114881531 @default.
- W4302040896 cites W3160841834 @default.
- W4302040896 cites W4200294315 @default.
- W4302040896 doi "https://doi.org/10.1109/iciem54221.2022.9853149" @default.
- W4302040896 hasPublicationYear "2022" @default.
- W4302040896 type Work @default.
- W4302040896 citedByCount "1" @default.
- W4302040896 countsByYear W43020408962022 @default.
- W4302040896 crossrefType "proceedings-article" @default.
- W4302040896 hasAuthorship W4302040896A5015924658 @default.
- W4302040896 hasAuthorship W4302040896A5025039072 @default.
- W4302040896 hasAuthorship W4302040896A5031264115 @default.
- W4302040896 hasAuthorship W4302040896A5032746007 @default.
- W4302040896 hasAuthorship W4302040896A5068245670 @default.
- W4302040896 hasConcept C112930515 @default.
- W4302040896 hasConcept C118552586 @default.
- W4302040896 hasConcept C119857082 @default.
- W4302040896 hasConcept C124101348 @default.
- W4302040896 hasConcept C154945302 @default.
- W4302040896 hasConcept C160735492 @default.
- W4302040896 hasConcept C162324750 @default.
- W4302040896 hasConcept C2522767166 @default.
- W4302040896 hasConcept C27415008 @default.
- W4302040896 hasConcept C41008148 @default.
- W4302040896 hasConcept C50522688 @default.
- W4302040896 hasConcept C71924100 @default.
- W4302040896 hasConcept C75684735 @default.
- W4302040896 hasConceptScore W4302040896C112930515 @default.
- W4302040896 hasConceptScore W4302040896C118552586 @default.
- W4302040896 hasConceptScore W4302040896C119857082 @default.
- W4302040896 hasConceptScore W4302040896C124101348 @default.
- W4302040896 hasConceptScore W4302040896C154945302 @default.
- W4302040896 hasConceptScore W4302040896C160735492 @default.
- W4302040896 hasConceptScore W4302040896C162324750 @default.
- W4302040896 hasConceptScore W4302040896C2522767166 @default.
- W4302040896 hasConceptScore W4302040896C27415008 @default.
- W4302040896 hasConceptScore W4302040896C41008148 @default.
- W4302040896 hasConceptScore W4302040896C50522688 @default.
- W4302040896 hasConceptScore W4302040896C71924100 @default.
- W4302040896 hasConceptScore W4302040896C75684735 @default.
- W4302040896 hasLocation W43020408961 @default.
- W4302040896 hasOpenAccess W4302040896 @default.
- W4302040896 hasPrimaryLocation W43020408961 @default.
- W4302040896 hasRelatedWork W2178323067 @default.
- W4302040896 hasRelatedWork W2402418463 @default.
- W4302040896 hasRelatedWork W2783354765 @default.
- W4302040896 hasRelatedWork W3014300295 @default.
- W4302040896 hasRelatedWork W3194102186 @default.
- W4302040896 hasRelatedWork W3196390274 @default.
- W4302040896 hasRelatedWork W3215038878 @default.
- W4302040896 hasRelatedWork W4200006435 @default.
- W4302040896 hasRelatedWork W4288085467 @default.
- W4302040896 hasRelatedWork W4375840519 @default.
- W4302040896 isParatext "false" @default.
- W4302040896 isRetracted "false" @default.
- W4302040896 workType "article" @default.