Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302139612> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4302139612 endingPage "1274" @default.
- W4302139612 startingPage "1261" @default.
- W4302139612 abstract "Underwater flowlines (pipelines and cables) have become a popular option worldwide as communication lines. Correspondingly the demand for underwater trenching increased with the most desirable method internationally, jet trenching for its benefits in protecting the flowlines from external hazards. However, the trenching method is suffering from a main problem that can affect the construction and operation phases. This problem is the use of maximum jetting pressure needed for underwater trenching which leads to extra costs in the construction phase. Furthermore, the unstraightening of the trench can cause extra stress on the flowline requiring extra maintenance in the operation phase. The key cause of this problem is the classification of the underwater soil, as if the underwater soils cannot be classified as accurately as possible, the suitable jetting pressure required to trench these soils could not be applied correctly. Therefore, this research aims to develop a machine learning classifier for soil classification as a solution for enhancing the performance of the underwater trenching process. This classifier was constructed, trained, and evaluated by MATLAB R2020a to classify the underwater soil type by analyzing the soil image samples by an artificial neural network (ANN). Then a prototype that mimics exactly the real trenching mechanism was built to test the developed classifier based on three different types of soil (sand, clay & gravel). The results showed that the classifier successfully identify and classify the three different types of soil used. Finally, the results confirmed that the classifier will enhance the trenching processes. As it eliminates the need for soil classification by conventional methods while executing it in an easy fast process that will save energy, and cost, and decrease the need for future maintenance processes." @default.
- W4302139612 created "2022-10-06" @default.
- W4302139612 creator A5036796702 @default.
- W4302139612 creator A5056827435 @default.
- W4302139612 creator A5060713554 @default.
- W4302139612 creator A5008800283 @default.
- W4302139612 date "2022-11-01" @default.
- W4302139612 modified "2023-10-13" @default.
- W4302139612 title "Energy saving and environment protection solution for the submarine pipelines based on deep learning technology" @default.
- W4302139612 cites W1964208401 @default.
- W4302139612 cites W2076634503 @default.
- W4302139612 cites W2515372818 @default.
- W4302139612 cites W2555430074 @default.
- W4302139612 cites W2899911821 @default.
- W4302139612 cites W2961018989 @default.
- W4302139612 cites W3055123432 @default.
- W4302139612 cites W3149981196 @default.
- W4302139612 doi "https://doi.org/10.1016/j.egyr.2022.07.127" @default.
- W4302139612 hasPublicationYear "2022" @default.
- W4302139612 type Work @default.
- W4302139612 citedByCount "2" @default.
- W4302139612 countsByYear W43021396122023 @default.
- W4302139612 crossrefType "journal-article" @default.
- W4302139612 hasAuthorship W4302139612A5008800283 @default.
- W4302139612 hasAuthorship W4302139612A5036796702 @default.
- W4302139612 hasAuthorship W4302139612A5056827435 @default.
- W4302139612 hasAuthorship W4302139612A5060713554 @default.
- W4302139612 hasBestOaLocation W43021396121 @default.
- W4302139612 hasConcept C111368507 @default.
- W4302139612 hasConcept C121327165 @default.
- W4302139612 hasConcept C127313418 @default.
- W4302139612 hasConcept C127413603 @default.
- W4302139612 hasConcept C154945302 @default.
- W4302139612 hasConcept C155310634 @default.
- W4302139612 hasConcept C175309249 @default.
- W4302139612 hasConcept C178790620 @default.
- W4302139612 hasConcept C185592680 @default.
- W4302139612 hasConcept C199104240 @default.
- W4302139612 hasConcept C2779227376 @default.
- W4302139612 hasConcept C41008148 @default.
- W4302139612 hasConcept C50644808 @default.
- W4302139612 hasConcept C87717796 @default.
- W4302139612 hasConcept C95623464 @default.
- W4302139612 hasConcept C98083399 @default.
- W4302139612 hasConceptScore W4302139612C111368507 @default.
- W4302139612 hasConceptScore W4302139612C121327165 @default.
- W4302139612 hasConceptScore W4302139612C127313418 @default.
- W4302139612 hasConceptScore W4302139612C127413603 @default.
- W4302139612 hasConceptScore W4302139612C154945302 @default.
- W4302139612 hasConceptScore W4302139612C155310634 @default.
- W4302139612 hasConceptScore W4302139612C175309249 @default.
- W4302139612 hasConceptScore W4302139612C178790620 @default.
- W4302139612 hasConceptScore W4302139612C185592680 @default.
- W4302139612 hasConceptScore W4302139612C199104240 @default.
- W4302139612 hasConceptScore W4302139612C2779227376 @default.
- W4302139612 hasConceptScore W4302139612C41008148 @default.
- W4302139612 hasConceptScore W4302139612C50644808 @default.
- W4302139612 hasConceptScore W4302139612C87717796 @default.
- W4302139612 hasConceptScore W4302139612C95623464 @default.
- W4302139612 hasConceptScore W4302139612C98083399 @default.
- W4302139612 hasLocation W43021396121 @default.
- W4302139612 hasLocation W43021396122 @default.
- W4302139612 hasOpenAccess W4302139612 @default.
- W4302139612 hasPrimaryLocation W43021396121 @default.
- W4302139612 hasRelatedWork W1965984170 @default.
- W4302139612 hasRelatedWork W216375531 @default.
- W4302139612 hasRelatedWork W2255351120 @default.
- W4302139612 hasRelatedWork W2325526606 @default.
- W4302139612 hasRelatedWork W2353860876 @default.
- W4302139612 hasRelatedWork W2354601948 @default.
- W4302139612 hasRelatedWork W2376155693 @default.
- W4302139612 hasRelatedWork W2393860696 @default.
- W4302139612 hasRelatedWork W2908535126 @default.
- W4302139612 hasRelatedWork W302851495 @default.
- W4302139612 hasVolume "8" @default.
- W4302139612 isParatext "false" @default.
- W4302139612 isRetracted "false" @default.
- W4302139612 workType "article" @default.