Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302287879> ?p ?o ?g. }
- W4302287879 endingPage "24" @default.
- W4302287879 startingPage "1" @default.
- W4302287879 abstract "Traditional fracture characterization techniques based on core and imaging logs are too expensive to cover and extrapolate to all wells. In this study, fracture characterization is achieved by comprehensively considering logging responses and geomechanical parameters, combined with the extreme value and variance analysis stratification method, Pearson correlation analysis, principal component analysis (PCA), and long short term memory (LSTM) neural network. The results demonstrate that fracture-developed intervals can be accurately divided by the extreme value and variance analysis stratification method and the logging response. The introduction of geomechanical parameters, Pearson correlation analysis, and PCA can achieve data dimensionality reduction while retaining the information contained in the original indicators, which directly improve the network performance. LSTM network can fully mine the information within and between data, which is highly suitable for fracture characterization. Taking the predicted fracture density as an example, the RMSE is 1.55. Compared with Backpropagation Neural Network (BP), Support Vector Regression (SVR) and Convolutional Neural Network (CNN), the RMSE of this method decreases by 0.08, 0.09 and 0.01, respectively. The findings of this study can help for rationalizing the exploration and development program of carbonate reservoirs and enhance the production of hydrocarbons in naturally fractured reservoirs." @default.
- W4302287879 created "2022-10-06" @default.
- W4302287879 creator A5010636608 @default.
- W4302287879 creator A5020383361 @default.
- W4302287879 creator A5032967388 @default.
- W4302287879 creator A5045856000 @default.
- W4302287879 creator A5046345934 @default.
- W4302287879 creator A5053511826 @default.
- W4302287879 creator A5074667554 @default.
- W4302287879 date "2022-10-06" @default.
- W4302287879 modified "2023-09-29" @default.
- W4302287879 title "Intelligent prediction of fracture parameters in ultra-deep carbonate rocks based on knowledge and data dual drive" @default.
- W4302287879 cites W1966992005 @default.
- W4302287879 cites W1988344992 @default.
- W4302287879 cites W1988608581 @default.
- W4302287879 cites W1995391341 @default.
- W4302287879 cites W2028081771 @default.
- W4302287879 cites W2042628458 @default.
- W4302287879 cites W2044281374 @default.
- W4302287879 cites W2051737686 @default.
- W4302287879 cites W2139673014 @default.
- W4302287879 cites W2253211496 @default.
- W4302287879 cites W2275470757 @default.
- W4302287879 cites W2413417178 @default.
- W4302287879 cites W2519574117 @default.
- W4302287879 cites W2519800061 @default.
- W4302287879 cites W2570115779 @default.
- W4302287879 cites W2750256683 @default.
- W4302287879 cites W2755177460 @default.
- W4302287879 cites W2757496364 @default.
- W4302287879 cites W2767435425 @default.
- W4302287879 cites W2809146475 @default.
- W4302287879 cites W2834213610 @default.
- W4302287879 cites W2905903547 @default.
- W4302287879 cites W3007266227 @default.
- W4302287879 cites W3011109287 @default.
- W4302287879 cites W3033247985 @default.
- W4302287879 cites W3033790883 @default.
- W4302287879 cites W3137070409 @default.
- W4302287879 cites W3182046553 @default.
- W4302287879 cites W3189165652 @default.
- W4302287879 cites W4205478815 @default.
- W4302287879 cites W4206442693 @default.
- W4302287879 cites W4210746004 @default.
- W4302287879 cites W4211195172 @default.
- W4302287879 cites W4229443421 @default.
- W4302287879 cites W4281391540 @default.
- W4302287879 cites W4283721532 @default.
- W4302287879 doi "https://doi.org/10.1080/10916466.2022.2130358" @default.
- W4302287879 hasPublicationYear "2022" @default.
- W4302287879 type Work @default.
- W4302287879 citedByCount "0" @default.
- W4302287879 crossrefType "journal-article" @default.
- W4302287879 hasAuthorship W4302287879A5010636608 @default.
- W4302287879 hasAuthorship W4302287879A5020383361 @default.
- W4302287879 hasAuthorship W4302287879A5032967388 @default.
- W4302287879 hasAuthorship W4302287879A5045856000 @default.
- W4302287879 hasAuthorship W4302287879A5046345934 @default.
- W4302287879 hasAuthorship W4302287879A5053511826 @default.
- W4302287879 hasAuthorship W4302287879A5074667554 @default.
- W4302287879 hasConcept C127313418 @default.
- W4302287879 hasConcept C138885662 @default.
- W4302287879 hasConcept C154945302 @default.
- W4302287879 hasConcept C159985019 @default.
- W4302287879 hasConcept C191897082 @default.
- W4302287879 hasConcept C192562407 @default.
- W4302287879 hasConcept C19320362 @default.
- W4302287879 hasConcept C2780659211 @default.
- W4302287879 hasConcept C2780980858 @default.
- W4302287879 hasConcept C41008148 @default.
- W4302287879 hasConcept C41895202 @default.
- W4302287879 hasConcept C43369102 @default.
- W4302287879 hasConceptScore W4302287879C127313418 @default.
- W4302287879 hasConceptScore W4302287879C138885662 @default.
- W4302287879 hasConceptScore W4302287879C154945302 @default.
- W4302287879 hasConceptScore W4302287879C159985019 @default.
- W4302287879 hasConceptScore W4302287879C191897082 @default.
- W4302287879 hasConceptScore W4302287879C192562407 @default.
- W4302287879 hasConceptScore W4302287879C19320362 @default.
- W4302287879 hasConceptScore W4302287879C2780659211 @default.
- W4302287879 hasConceptScore W4302287879C2780980858 @default.
- W4302287879 hasConceptScore W4302287879C41008148 @default.
- W4302287879 hasConceptScore W4302287879C41895202 @default.
- W4302287879 hasConceptScore W4302287879C43369102 @default.
- W4302287879 hasFunder F4320321570 @default.
- W4302287879 hasLocation W43022878791 @default.
- W4302287879 hasOpenAccess W4302287879 @default.
- W4302287879 hasPrimaryLocation W43022878791 @default.
- W4302287879 hasRelatedWork W2040993944 @default.
- W4302287879 hasRelatedWork W2102481219 @default.
- W4302287879 hasRelatedWork W2131200549 @default.
- W4302287879 hasRelatedWork W2143195778 @default.
- W4302287879 hasRelatedWork W2370495315 @default.
- W4302287879 hasRelatedWork W2372245997 @default.
- W4302287879 hasRelatedWork W2385515337 @default.
- W4302287879 hasRelatedWork W2391823592 @default.
- W4302287879 hasRelatedWork W2472571974 @default.
- W4302287879 hasRelatedWork W2774111268 @default.