Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302292904> ?p ?o ?g. }
- W4302292904 endingPage "1529" @default.
- W4302292904 startingPage "1516" @default.
- W4302292904 abstract "Earthquakes often affect buildings that did comply with regulations in force at the time of design, prompting the need for new approaches addressing the complex structural dynamics of seismic design. In this paper, we demonstrate how strucural resilience can be appraised to inform optimization pathways by utilising artificial neural networks, augmented with evolutionary computation. This involves efficient multi-layer computational models, to learn complex multi-aspects structural dynamics, through several levels of abstraction. By means of single and multi-objective optimization, an existing structural system is modelled with an accuracy in excess of 98% to simulate its structural loading behaviour, while a performance-based approach is used to determine the optimum parameter settings to maximize its earthquake resilience. We have used the 2008 Wenchuan Earthquake as a case study. Our results demonstrate that an estimated structural design cost increase of 20% can lead to a damage reduction of up to 75%, which drastically reduces the risk of fatality." @default.
- W4302292904 created "2022-10-06" @default.
- W4302292904 creator A5022896216 @default.
- W4302292904 creator A5037885143 @default.
- W4302292904 creator A5056347117 @default.
- W4302292904 creator A5087094312 @default.
- W4302292904 date "2022-11-01" @default.
- W4302292904 modified "2023-10-18" @default.
- W4302292904 title "A machine learning approach to appraise and enhance the structural resilience of buildings to seismic hazards" @default.
- W4302292904 cites W1975084684 @default.
- W4302292904 cites W1975617572 @default.
- W4302292904 cites W1979228995 @default.
- W4302292904 cites W2004620726 @default.
- W4302292904 cites W2005435092 @default.
- W4302292904 cites W2010844476 @default.
- W4302292904 cites W2014782452 @default.
- W4302292904 cites W2019680207 @default.
- W4302292904 cites W2041367054 @default.
- W4302292904 cites W2045323216 @default.
- W4302292904 cites W2048573695 @default.
- W4302292904 cites W2050202899 @default.
- W4302292904 cites W2095498734 @default.
- W4302292904 cites W2098334262 @default.
- W4302292904 cites W2143396011 @default.
- W4302292904 cites W2222447337 @default.
- W4302292904 cites W2316672685 @default.
- W4302292904 cites W2407264380 @default.
- W4302292904 cites W2527716016 @default.
- W4302292904 cites W2605300842 @default.
- W4302292904 cites W2752459121 @default.
- W4302292904 cites W2763685548 @default.
- W4302292904 cites W2793734850 @default.
- W4302292904 cites W2805914758 @default.
- W4302292904 cites W2888812312 @default.
- W4302292904 cites W2901312569 @default.
- W4302292904 cites W2937450986 @default.
- W4302292904 cites W3122912376 @default.
- W4302292904 cites W3123200641 @default.
- W4302292904 cites W4245777492 @default.
- W4302292904 cites W46057551 @default.
- W4302292904 doi "https://doi.org/10.1016/j.istruc.2022.09.113" @default.
- W4302292904 hasPublicationYear "2022" @default.
- W4302292904 type Work @default.
- W4302292904 citedByCount "0" @default.
- W4302292904 crossrefType "journal-article" @default.
- W4302292904 hasAuthorship W4302292904A5022896216 @default.
- W4302292904 hasAuthorship W4302292904A5037885143 @default.
- W4302292904 hasAuthorship W4302292904A5056347117 @default.
- W4302292904 hasAuthorship W4302292904A5087094312 @default.
- W4302292904 hasBestOaLocation W43022929041 @default.
- W4302292904 hasConcept C111335779 @default.
- W4302292904 hasConcept C111472728 @default.
- W4302292904 hasConcept C112930515 @default.
- W4302292904 hasConcept C11413529 @default.
- W4302292904 hasConcept C121332964 @default.
- W4302292904 hasConcept C124304363 @default.
- W4302292904 hasConcept C127413603 @default.
- W4302292904 hasConcept C134512083 @default.
- W4302292904 hasConcept C138885662 @default.
- W4302292904 hasConcept C147176958 @default.
- W4302292904 hasConcept C154945302 @default.
- W4302292904 hasConcept C200601418 @default.
- W4302292904 hasConcept C2524010 @default.
- W4302292904 hasConcept C2779585090 @default.
- W4302292904 hasConcept C33923547 @default.
- W4302292904 hasConcept C41008148 @default.
- W4302292904 hasConcept C45374587 @default.
- W4302292904 hasConcept C50644808 @default.
- W4302292904 hasConcept C66938386 @default.
- W4302292904 hasConcept C71924100 @default.
- W4302292904 hasConcept C88282795 @default.
- W4302292904 hasConcept C97355855 @default.
- W4302292904 hasConceptScore W4302292904C111335779 @default.
- W4302292904 hasConceptScore W4302292904C111472728 @default.
- W4302292904 hasConceptScore W4302292904C112930515 @default.
- W4302292904 hasConceptScore W4302292904C11413529 @default.
- W4302292904 hasConceptScore W4302292904C121332964 @default.
- W4302292904 hasConceptScore W4302292904C124304363 @default.
- W4302292904 hasConceptScore W4302292904C127413603 @default.
- W4302292904 hasConceptScore W4302292904C134512083 @default.
- W4302292904 hasConceptScore W4302292904C138885662 @default.
- W4302292904 hasConceptScore W4302292904C147176958 @default.
- W4302292904 hasConceptScore W4302292904C154945302 @default.
- W4302292904 hasConceptScore W4302292904C200601418 @default.
- W4302292904 hasConceptScore W4302292904C2524010 @default.
- W4302292904 hasConceptScore W4302292904C2779585090 @default.
- W4302292904 hasConceptScore W4302292904C33923547 @default.
- W4302292904 hasConceptScore W4302292904C41008148 @default.
- W4302292904 hasConceptScore W4302292904C45374587 @default.
- W4302292904 hasConceptScore W4302292904C50644808 @default.
- W4302292904 hasConceptScore W4302292904C66938386 @default.
- W4302292904 hasConceptScore W4302292904C71924100 @default.
- W4302292904 hasConceptScore W4302292904C88282795 @default.
- W4302292904 hasConceptScore W4302292904C97355855 @default.
- W4302292904 hasLocation W43022929041 @default.
- W4302292904 hasLocation W43022929042 @default.
- W4302292904 hasLocation W43022929043 @default.
- W4302292904 hasOpenAccess W4302292904 @default.