Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302299462> ?p ?o ?g. }
- W4302299462 endingPage "825" @default.
- W4302299462 startingPage "825" @default.
- W4302299462 abstract "Fluctuation theorems provide a correspondence between properties of quantum systems in thermal equilibrium and a work distribution arising in a non-equilibrium process that connects two quantum systems with Hamiltonians $H_0$ and $H_1=H_0+V$. Building upon these theorems, we present a quantum algorithm to prepare a purification of the thermal state of $H_1$ at inverse temperature $beta ge 0$ starting from a purification of the thermal state of $H_0$. The complexity of the quantum algorithm, given by the number of uses of certain unitaries, is $tilde {cal O}(e^{beta (Delta ! A- w_l)/2})$, where $Delta ! A$ is the free-energy difference between $H_1$ and $H_0,$ and $w_l$ is a work cutoff that depends on the properties of the work distribution and the approximation error $epsilon>0$. If the non-equilibrium process is trivial, this complexity is exponential in $beta |V|$, where $|V|$ is the spectral norm of $V$. This represents a significant improvement of prior quantum algorithms that have complexity exponential in $beta |H_1|$ in the regime where $|V|ll |H_1|$. The dependence of the complexity in $epsilon$ varies according to the structure of the quantum systems. It can be exponential in $1/epsilon$ in general, but we show it to be sublinear in $1/epsilon$ if $H_0$ and $H_1$ commute, or polynomial in $1/epsilon$ if $H_0$ and $H_1$ are local spin systems. The possibility of applying a unitary that drives the system out of equilibrium allows one to increase the value of $w_l$ and improve the complexity even further. To this end, we analyze the complexity for preparing the thermal state of the transverse field Ising model using different non-equilibrium unitary processes and see significant complexity improvements." @default.
- W4302299462 created "2022-10-06" @default.
- W4302299462 creator A5018541813 @default.
- W4302299462 creator A5025882224 @default.
- W4302299462 creator A5071652167 @default.
- W4302299462 creator A5084717491 @default.
- W4302299462 creator A5090788707 @default.
- W4302299462 date "2022-10-06" @default.
- W4302299462 modified "2023-10-18" @default.
- W4302299462 title "Quantum algorithms from fluctuation theorems: Thermal-state preparation" @default.
- W4302299462 cites W1483489440 @default.
- W4302299462 cites W1561344775 @default.
- W4302299462 cites W1569398187 @default.
- W4302299462 cites W1597393267 @default.
- W4302299462 cites W185137928 @default.
- W4302299462 cites W1867978104 @default.
- W4302299462 cites W1970092042 @default.
- W4302299462 cites W1976570683 @default.
- W4302299462 cites W1981629484 @default.
- W4302299462 cites W1982766997 @default.
- W4302299462 cites W1983450159 @default.
- W4302299462 cites W1986168108 @default.
- W4302299462 cites W1989195611 @default.
- W4302299462 cites W1994516937 @default.
- W4302299462 cites W1997391728 @default.
- W4302299462 cites W2001903741 @default.
- W4302299462 cites W2017474131 @default.
- W4302299462 cites W2021411499 @default.
- W4302299462 cites W2021820673 @default.
- W4302299462 cites W2024060531 @default.
- W4302299462 cites W2035078255 @default.
- W4302299462 cites W2037354050 @default.
- W4302299462 cites W2040008731 @default.
- W4302299462 cites W2040792108 @default.
- W4302299462 cites W2044885737 @default.
- W4302299462 cites W2046481556 @default.
- W4302299462 cites W2056760934 @default.
- W4302299462 cites W2061579329 @default.
- W4302299462 cites W2063346801 @default.
- W4302299462 cites W2065768518 @default.
- W4302299462 cites W2072105247 @default.
- W4302299462 cites W2082404199 @default.
- W4302299462 cites W2084019889 @default.
- W4302299462 cites W2086208318 @default.
- W4302299462 cites W2097174474 @default.
- W4302299462 cites W2103512689 @default.
- W4302299462 cites W2109741106 @default.
- W4302299462 cites W2121981260 @default.
- W4302299462 cites W2128706048 @default.
- W4302299462 cites W2137748572 @default.
- W4302299462 cites W2138262447 @default.
- W4302299462 cites W2149117519 @default.
- W4302299462 cites W2149801992 @default.
- W4302299462 cites W2402136347 @default.
- W4302299462 cites W2415656260 @default.
- W4302299462 cites W2499286390 @default.
- W4302299462 cites W2761673598 @default.
- W4302299462 cites W2768206303 @default.
- W4302299462 cites W2791899439 @default.
- W4302299462 cites W2794444783 @default.
- W4302299462 cites W2903199027 @default.
- W4302299462 cites W2978816506 @default.
- W4302299462 cites W2981843198 @default.
- W4302299462 cites W2984279929 @default.
- W4302299462 cites W2990961515 @default.
- W4302299462 cites W3007060332 @default.
- W4302299462 cites W3033035931 @default.
- W4302299462 cites W3033362905 @default.
- W4302299462 cites W3082879362 @default.
- W4302299462 cites W3090921460 @default.
- W4302299462 cites W3098107311 @default.
- W4302299462 cites W3098796089 @default.
- W4302299462 cites W3098966778 @default.
- W4302299462 cites W3101249570 @default.
- W4302299462 cites W3101636216 @default.
- W4302299462 cites W3101824094 @default.
- W4302299462 cites W3102474551 @default.
- W4302299462 cites W3102774135 @default.
- W4302299462 cites W3104433882 @default.
- W4302299462 cites W3106542130 @default.
- W4302299462 cites W3118800713 @default.
- W4302299462 cites W3130923323 @default.
- W4302299462 cites W3136233239 @default.
- W4302299462 cites W3193496905 @default.
- W4302299462 cites W3199543116 @default.
- W4302299462 cites W3204805434 @default.
- W4302299462 cites W3209107739 @default.
- W4302299462 cites W3211491562 @default.
- W4302299462 cites W3214675565 @default.
- W4302299462 cites W4206894258 @default.
- W4302299462 cites W4214970561 @default.
- W4302299462 cites W4226397688 @default.
- W4302299462 cites W4287251297 @default.
- W4302299462 cites W4300333012 @default.
- W4302299462 cites W4301489113 @default.
- W4302299462 doi "https://doi.org/10.22331/q-2022-10-06-825" @default.
- W4302299462 hasPublicationYear "2022" @default.
- W4302299462 type Work @default.