Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302305200> ?p ?o ?g. }
- W4302305200 abstract "The emergence of deep neural networks has allowed the development of fully automated and efficient diagnostic systems for plant disease and pest phenotyping. Although previous approaches have proven to be promising, they are limited, especially in real-life scenarios, to properly diagnose and characterize the problem. In this work, we propose a framework which besides recognizing and localizing various plant abnormalities also informs the user about the severity of the diseases infecting the plant. By taking a single image as input, our algorithm is able to generate detailed descriptive phrases (user-defined) that display the location, severity stage, and visual attributes of all the abnormalities that are present in the image. Our framework is composed of three main components. One of them is a detector that accurately and efficiently recognizes and localizes the abnormalities in plants by extracting region-based anomaly features using a deep neural network-based feature extractor. The second one is an encoder-decoder network that performs pixel-level analysis to generate abnormality-specific severity levels. Lastly is an integration unit which aggregates the information of these units and assigns unique IDs to all the detected anomaly instances, thus generating descriptive sentences describing the location, severity, and class of anomalies infecting plants. We discuss two possible ways of utilizing the abovementioned units in a single framework. We evaluate and analyze the efficacy of both approaches on newly constructed diverse paprika disease and pest recognition datasets, comprising six anomaly categories along with 11 different severity levels. Our algorithm achieves mean average precision of 91.7% for the abnormality detection task and a mean panoptic quality score of 70.78% for severity level prediction. Our algorithm provides a practical and cost-efficient solution to farmers that facilitates proper handling of crops." @default.
- W4302305200 created "2022-10-06" @default.
- W4302305200 creator A5004266944 @default.
- W4302305200 creator A5010457708 @default.
- W4302305200 creator A5013502609 @default.
- W4302305200 creator A5034576810 @default.
- W4302305200 creator A5069528509 @default.
- W4302305200 creator A5090657067 @default.
- W4302305200 date "2022-10-06" @default.
- W4302305200 modified "2023-10-05" @default.
- W4302305200 title "DIANA: A deep learning-based paprika plant disease and pest phenotyping system with disease severity analysis" @default.
- W4302305200 cites W1974248578 @default.
- W4302305200 cites W2004732416 @default.
- W4302305200 cites W2005543329 @default.
- W4302305200 cites W2006135408 @default.
- W4302305200 cites W2019610851 @default.
- W4302305200 cites W2050387150 @default.
- W4302305200 cites W2058857246 @default.
- W4302305200 cites W2071261704 @default.
- W4302305200 cites W2091913822 @default.
- W4302305200 cites W2098566984 @default.
- W4302305200 cites W2142098936 @default.
- W4302305200 cites W2144202617 @default.
- W4302305200 cites W2412782625 @default.
- W4302305200 cites W2473156356 @default.
- W4302305200 cites W2579348194 @default.
- W4302305200 cites W2586383982 @default.
- W4302305200 cites W2618530766 @default.
- W4302305200 cites W2621367454 @default.
- W4302305200 cites W2733343268 @default.
- W4302305200 cites W2744967951 @default.
- W4302305200 cites W2752788177 @default.
- W4302305200 cites W2753403518 @default.
- W4302305200 cites W2770047034 @default.
- W4302305200 cites W2776705292 @default.
- W4302305200 cites W2789255992 @default.
- W4302305200 cites W2889543275 @default.
- W4302305200 cites W2936718694 @default.
- W4302305200 cites W2944599236 @default.
- W4302305200 cites W2953106684 @default.
- W4302305200 cites W2963820222 @default.
- W4302305200 cites W2964350391 @default.
- W4302305200 cites W2983849081 @default.
- W4302305200 cites W2991310200 @default.
- W4302305200 cites W2995504058 @default.
- W4302305200 cites W3035016091 @default.
- W4302305200 cites W3131897793 @default.
- W4302305200 cites W3178340391 @default.
- W4302305200 cites W3190789542 @default.
- W4302305200 cites W4200045448 @default.
- W4302305200 cites W4221099717 @default.
- W4302305200 cites W4293584584 @default.
- W4302305200 cites W4297775537 @default.
- W4302305200 cites W639708223 @default.
- W4302305200 cites W86275900 @default.
- W4302305200 doi "https://doi.org/10.3389/fpls.2022.983625" @default.
- W4302305200 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36275542" @default.
- W4302305200 hasPublicationYear "2022" @default.
- W4302305200 type Work @default.
- W4302305200 citedByCount "5" @default.
- W4302305200 countsByYear W43023052002023 @default.
- W4302305200 crossrefType "journal-article" @default.
- W4302305200 hasAuthorship W4302305200A5004266944 @default.
- W4302305200 hasAuthorship W4302305200A5010457708 @default.
- W4302305200 hasAuthorship W4302305200A5013502609 @default.
- W4302305200 hasAuthorship W4302305200A5034576810 @default.
- W4302305200 hasAuthorship W4302305200A5069528509 @default.
- W4302305200 hasAuthorship W4302305200A5090657067 @default.
- W4302305200 hasBestOaLocation W43023052001 @default.
- W4302305200 hasConcept C111919701 @default.
- W4302305200 hasConcept C117978034 @default.
- W4302305200 hasConcept C118505674 @default.
- W4302305200 hasConcept C118552586 @default.
- W4302305200 hasConcept C119857082 @default.
- W4302305200 hasConcept C121332964 @default.
- W4302305200 hasConcept C124101348 @default.
- W4302305200 hasConcept C127413603 @default.
- W4302305200 hasConcept C12997251 @default.
- W4302305200 hasConcept C138885662 @default.
- W4302305200 hasConcept C150903083 @default.
- W4302305200 hasConcept C153180895 @default.
- W4302305200 hasConcept C154945302 @default.
- W4302305200 hasConcept C160633673 @default.
- W4302305200 hasConcept C21880701 @default.
- W4302305200 hasConcept C22508944 @default.
- W4302305200 hasConcept C26873012 @default.
- W4302305200 hasConcept C2776401178 @default.
- W4302305200 hasConcept C3019235130 @default.
- W4302305200 hasConcept C41008148 @default.
- W4302305200 hasConcept C41895202 @default.
- W4302305200 hasConcept C50965678 @default.
- W4302305200 hasConcept C59822182 @default.
- W4302305200 hasConcept C71924100 @default.
- W4302305200 hasConcept C739882 @default.
- W4302305200 hasConcept C86803240 @default.
- W4302305200 hasConceptScore W4302305200C111919701 @default.
- W4302305200 hasConceptScore W4302305200C117978034 @default.
- W4302305200 hasConceptScore W4302305200C118505674 @default.
- W4302305200 hasConceptScore W4302305200C118552586 @default.
- W4302305200 hasConceptScore W4302305200C119857082 @default.