Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302305268> ?p ?o ?g. }
- W4302305268 endingPage "36276" @default.
- W4302305268 startingPage "36263" @default.
- W4302305268 abstract "The migration of formation water plays a crucial role in hydrocarbon accumulation and preservation. The hydrodynamic field controls the content of various ions in formation water and is an important participant in hydrocarbon evolution. One potential high-yield gas field is the tight sandstone gas reservoirs in the northern Tianhuan Depression of the Ordos Basin, China. However, due to the complex gas-water relationship and limited water sample data, the development of gas reservoirs has encountered great difficulties; we thus analyzed the geochemical characteristics of a large scale of formation water acquired from the Permian in the Ordos Basin (60 water samples collected from 45 wells in the He8 Member). The results showed that formation water is the original sedimentary water in tight sandstone reservoirs, which represent a closed hydrological environment, which is conducive to gas accumulation. This is also related to the demonstrated strong water-rock reaction and diagenetic. We also developed a statistical model between these geochemical parameters and gas preservation based on machine learning algorithms (decision trees). Note that machine learning, as a data-driven artificial intelligence algorithm, generates massive correlation models that can learn from the structured training data sets to carry out predictions or evaluations in newly presented data. This algorithm can process large amounts of information data more quickly and can build more perfect correlation models through deep learning mechanisms than traditional statistical methods. The results suggest that the metamorphism coefficient has the best indication effect on the preservation of gas reservoirs. The hydrological environment with (Cl--Na+)/Mg2+ > 50.066, Na+/Cl- ≤ 0.476, and Ma2+/Ca2+ ≤ 0.102 is a good hydrocarbon accumulation area. This study can be applied, by analogy, to more comprehensively interpret the correlation between the geochemical characteristics of formation water and hydrocarbon storage and to improve the accuracy of predicting favorable hydrocarbon accumulation areas in tight sandstone gas reservoirs." @default.
- W4302305268 created "2022-10-06" @default.
- W4302305268 creator A5015320458 @default.
- W4302305268 creator A5015968273 @default.
- W4302305268 creator A5019215073 @default.
- W4302305268 creator A5033263947 @default.
- W4302305268 creator A5048604711 @default.
- W4302305268 creator A5072071140 @default.
- W4302305268 date "2022-10-06" @default.
- W4302305268 modified "2023-10-14" @default.
- W4302305268 title "Indication of Formation Water Geochemistry for Hydrocarbon Preservation: New Applications of Machine Learning in Tight Sandstone Gas Reservoirs" @default.
- W4302305268 cites W1963884796 @default.
- W4302305268 cites W1974925161 @default.
- W4302305268 cites W1998660517 @default.
- W4302305268 cites W1999246452 @default.
- W4302305268 cites W2002105163 @default.
- W4302305268 cites W2005767181 @default.
- W4302305268 cites W2007411307 @default.
- W4302305268 cites W2019790506 @default.
- W4302305268 cites W2024997351 @default.
- W4302305268 cites W2039578290 @default.
- W4302305268 cites W2039816893 @default.
- W4302305268 cites W2042572946 @default.
- W4302305268 cites W2046411197 @default.
- W4302305268 cites W2061884722 @default.
- W4302305268 cites W2065243495 @default.
- W4302305268 cites W2067914461 @default.
- W4302305268 cites W2074724508 @default.
- W4302305268 cites W2074954750 @default.
- W4302305268 cites W2078641609 @default.
- W4302305268 cites W2086056020 @default.
- W4302305268 cites W2086142920 @default.
- W4302305268 cites W2087109988 @default.
- W4302305268 cites W2088759912 @default.
- W4302305268 cites W2138023984 @default.
- W4302305268 cites W2138821921 @default.
- W4302305268 cites W2164851432 @default.
- W4302305268 cites W2192034746 @default.
- W4302305268 cites W2342330991 @default.
- W4302305268 cites W2516391338 @default.
- W4302305268 cites W2519525319 @default.
- W4302305268 cites W2529186534 @default.
- W4302305268 cites W2562655431 @default.
- W4302305268 cites W2579971241 @default.
- W4302305268 cites W2735937663 @default.
- W4302305268 cites W2789082451 @default.
- W4302305268 cites W2885119167 @default.
- W4302305268 cites W2888488619 @default.
- W4302305268 cites W2910866051 @default.
- W4302305268 cites W2923222994 @default.
- W4302305268 cites W2947633363 @default.
- W4302305268 cites W2949884469 @default.
- W4302305268 cites W2952609086 @default.
- W4302305268 cites W2981835090 @default.
- W4302305268 cites W2982988459 @default.
- W4302305268 cites W3018564782 @default.
- W4302305268 cites W3094945920 @default.
- W4302305268 cites W3124708330 @default.
- W4302305268 cites W3130423478 @default.
- W4302305268 cites W3138096195 @default.
- W4302305268 cites W3176385337 @default.
- W4302305268 cites W3186101551 @default.
- W4302305268 doi "https://doi.org/10.1021/acsomega.2c03827" @default.
- W4302305268 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36278069" @default.
- W4302305268 hasPublicationYear "2022" @default.
- W4302305268 type Work @default.
- W4302305268 citedByCount "0" @default.
- W4302305268 crossrefType "journal-article" @default.
- W4302305268 hasAuthorship W4302305268A5015320458 @default.
- W4302305268 hasAuthorship W4302305268A5015968273 @default.
- W4302305268 hasAuthorship W4302305268A5019215073 @default.
- W4302305268 hasAuthorship W4302305268A5033263947 @default.
- W4302305268 hasAuthorship W4302305268A5048604711 @default.
- W4302305268 hasAuthorship W4302305268A5072071140 @default.
- W4302305268 hasBestOaLocation W43023052681 @default.
- W4302305268 hasConcept C109007969 @default.
- W4302305268 hasConcept C114793014 @default.
- W4302305268 hasConcept C127313418 @default.
- W4302305268 hasConcept C130452526 @default.
- W4302305268 hasConcept C17409809 @default.
- W4302305268 hasConcept C178790620 @default.
- W4302305268 hasConcept C185592680 @default.
- W4302305268 hasConcept C2776662147 @default.
- W4302305268 hasConcept C5900021 @default.
- W4302305268 hasConcept C68189081 @default.
- W4302305268 hasConcept C78762247 @default.
- W4302305268 hasConceptScore W4302305268C109007969 @default.
- W4302305268 hasConceptScore W4302305268C114793014 @default.
- W4302305268 hasConceptScore W4302305268C127313418 @default.
- W4302305268 hasConceptScore W4302305268C130452526 @default.
- W4302305268 hasConceptScore W4302305268C17409809 @default.
- W4302305268 hasConceptScore W4302305268C178790620 @default.
- W4302305268 hasConceptScore W4302305268C185592680 @default.
- W4302305268 hasConceptScore W4302305268C2776662147 @default.
- W4302305268 hasConceptScore W4302305268C5900021 @default.
- W4302305268 hasConceptScore W4302305268C68189081 @default.
- W4302305268 hasConceptScore W4302305268C78762247 @default.
- W4302305268 hasFunder F4320321001 @default.