Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302372711> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4302372711 abstract "Many tools from the field of graph signal processing exploit knowledge of the underlying graph's structure (e.g., as encoded in the Laplacian matrix) to process signals on the graph. Therefore, in the case when no graph is available, graph signal processing tools cannot be used anymore. Researchers have proposed approaches to infer a graph topology from observations of signals on its nodes. Since the problem is ill-posed, these approaches make assumptions, such as smoothness of the signals on the graph, or sparsity priors. In this paper, we propose a characterization of the space of valid graphs, in the sense that they can explain stationary signals. To simplify the exposition in this paper, we focus here on the case where signals were i.i.d. at some point back in time and were observed after diffusion on a graph. We show that the set of graphs verifying this assumption has a strong connection with the eigenvectors of the covariance matrix, and forms a convex set. Along with a theoretical study in which these eigenvectors are assumed to be known, we consider the practical case when the observations are noisy, and experimentally observe how fast the set of valid graphs converges to the set obtained when the exact eigenvectors are known, as the number of observations grows. To illustrate how this characterization can be used for graph recovery, we present two methods for selecting a particular point in this set under chosen criteria, namely graph simplicity and sparsity. Additionally, we introduce a measure to evaluate how much a graph is adapted to signals under a stationarity assumption. Finally, we evaluate how state-of-the-art methods relate to this framework through experiments on a dataset of temperatures." @default.
- W4302372711 created "2022-10-06" @default.
- W4302372711 creator A5047333951 @default.
- W4302372711 creator A5054014548 @default.
- W4302372711 creator A5068330560 @default.
- W4302372711 creator A5070406096 @default.
- W4302372711 creator A5089819604 @default.
- W4302372711 date "2016-05-09" @default.
- W4302372711 modified "2023-10-16" @default.
- W4302372711 title "Characterization and Inference of Graph Diffusion Processes from Observations of Stationary Signals" @default.
- W4302372711 doi "https://doi.org/10.48550/arxiv.1605.02569" @default.
- W4302372711 hasPublicationYear "2016" @default.
- W4302372711 type Work @default.
- W4302372711 citedByCount "0" @default.
- W4302372711 crossrefType "posted-content" @default.
- W4302372711 hasAuthorship W4302372711A5047333951 @default.
- W4302372711 hasAuthorship W4302372711A5054014548 @default.
- W4302372711 hasAuthorship W4302372711A5068330560 @default.
- W4302372711 hasAuthorship W4302372711A5070406096 @default.
- W4302372711 hasAuthorship W4302372711A5089819604 @default.
- W4302372711 hasBestOaLocation W43023727111 @default.
- W4302372711 hasConcept C11413529 @default.
- W4302372711 hasConcept C115178988 @default.
- W4302372711 hasConcept C121332964 @default.
- W4302372711 hasConcept C132525143 @default.
- W4302372711 hasConcept C158693339 @default.
- W4302372711 hasConcept C17169500 @default.
- W4302372711 hasConcept C180356752 @default.
- W4302372711 hasConcept C19332903 @default.
- W4302372711 hasConcept C203776342 @default.
- W4302372711 hasConcept C22149727 @default.
- W4302372711 hasConcept C33923547 @default.
- W4302372711 hasConcept C41008148 @default.
- W4302372711 hasConcept C62520636 @default.
- W4302372711 hasConcept C80444323 @default.
- W4302372711 hasConceptScore W4302372711C11413529 @default.
- W4302372711 hasConceptScore W4302372711C115178988 @default.
- W4302372711 hasConceptScore W4302372711C121332964 @default.
- W4302372711 hasConceptScore W4302372711C132525143 @default.
- W4302372711 hasConceptScore W4302372711C158693339 @default.
- W4302372711 hasConceptScore W4302372711C17169500 @default.
- W4302372711 hasConceptScore W4302372711C180356752 @default.
- W4302372711 hasConceptScore W4302372711C19332903 @default.
- W4302372711 hasConceptScore W4302372711C203776342 @default.
- W4302372711 hasConceptScore W4302372711C22149727 @default.
- W4302372711 hasConceptScore W4302372711C33923547 @default.
- W4302372711 hasConceptScore W4302372711C41008148 @default.
- W4302372711 hasConceptScore W4302372711C62520636 @default.
- W4302372711 hasConceptScore W4302372711C80444323 @default.
- W4302372711 hasLocation W43023727111 @default.
- W4302372711 hasOpenAccess W4302372711 @default.
- W4302372711 hasPrimaryLocation W43023727111 @default.
- W4302372711 hasRelatedWork W2046275336 @default.
- W4302372711 hasRelatedWork W2352203679 @default.
- W4302372711 hasRelatedWork W2898162043 @default.
- W4302372711 hasRelatedWork W2963702033 @default.
- W4302372711 hasRelatedWork W3127067864 @default.
- W4302372711 hasRelatedWork W4225913543 @default.
- W4302372711 hasRelatedWork W4292450760 @default.
- W4302372711 hasRelatedWork W4302372711 @default.
- W4302372711 hasRelatedWork W4318995835 @default.
- W4302372711 hasRelatedWork W4320342417 @default.
- W4302372711 isParatext "false" @default.
- W4302372711 isRetracted "false" @default.
- W4302372711 workType "article" @default.