Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302414823> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4302414823 abstract "In logistic regression, separation occurs when a linear combination of the predictors can perfectly classify part or all of the observations in the sample, and as a result, finite maximum likelihood estimates of the regression coefficients do not exist. Gelman et al. (2008) recommended independent Cauchy distributions as default priors for the regression coefficients in logistic regression, even in the case of separation, and reported posterior modes in their analyses. As the mean does not exist for the Cauchy prior, a natural question is whether the posterior means of the regression coefficients exist under separation. We prove theorems that provide necessary and sufficient conditions for the existence of posterior means under independent Cauchy priors for the logit link and a general family of link functions, including the probit link. We also study the existence of posterior means under multivariate Cauchy priors. For full Bayesian inference, we develop a Gibbs sampler based on Polya-Gamma data augmentation to sample from the posterior distribution under independent Student-t priors including Cauchy priors, and provide a companion R package in the supplement. We demonstrate empirically that even when the posterior means of the regression coefficients exist under separation, the magnitude of the posterior samples for Cauchy priors may be unusually large, and the corresponding Gibbs sampler shows extremely slow mixing. While alternative algorithms such as the No-U-Turn Sampler in Stan can greatly improve mixing, in order to resolve the issue of extremely heavy tailed posteriors for Cauchy priors under separation, one would need to consider lighter tailed priors such as normal priors or Student-t priors with degrees of freedom larger than one." @default.
- W4302414823 created "2022-10-06" @default.
- W4302414823 creator A5046767689 @default.
- W4302414823 creator A5051265588 @default.
- W4302414823 creator A5082395470 @default.
- W4302414823 date "2015-07-26" @default.
- W4302414823 modified "2023-10-16" @default.
- W4302414823 title "On the Use of Cauchy Prior Distributions for Bayesian Logistic Regression" @default.
- W4302414823 doi "https://doi.org/10.48550/arxiv.1507.07170" @default.
- W4302414823 hasPublicationYear "2015" @default.
- W4302414823 type Work @default.
- W4302414823 citedByCount "0" @default.
- W4302414823 crossrefType "posted-content" @default.
- W4302414823 hasAuthorship W4302414823A5046767689 @default.
- W4302414823 hasAuthorship W4302414823A5051265588 @default.
- W4302414823 hasAuthorship W4302414823A5082395470 @default.
- W4302414823 hasBestOaLocation W43024148231 @default.
- W4302414823 hasConcept C105795698 @default.
- W4302414823 hasConcept C107673813 @default.
- W4302414823 hasConcept C149782125 @default.
- W4302414823 hasConcept C151956035 @default.
- W4302414823 hasConcept C158424031 @default.
- W4302414823 hasConcept C160234255 @default.
- W4302414823 hasConcept C177769412 @default.
- W4302414823 hasConcept C28826006 @default.
- W4302414823 hasConcept C33923547 @default.
- W4302414823 hasConcept C37903108 @default.
- W4302414823 hasConcept C49344536 @default.
- W4302414823 hasConcept C57830394 @default.
- W4302414823 hasConceptScore W4302414823C105795698 @default.
- W4302414823 hasConceptScore W4302414823C107673813 @default.
- W4302414823 hasConceptScore W4302414823C149782125 @default.
- W4302414823 hasConceptScore W4302414823C151956035 @default.
- W4302414823 hasConceptScore W4302414823C158424031 @default.
- W4302414823 hasConceptScore W4302414823C160234255 @default.
- W4302414823 hasConceptScore W4302414823C177769412 @default.
- W4302414823 hasConceptScore W4302414823C28826006 @default.
- W4302414823 hasConceptScore W4302414823C33923547 @default.
- W4302414823 hasConceptScore W4302414823C37903108 @default.
- W4302414823 hasConceptScore W4302414823C49344536 @default.
- W4302414823 hasConceptScore W4302414823C57830394 @default.
- W4302414823 hasLocation W43024148231 @default.
- W4302414823 hasLocation W43024148232 @default.
- W4302414823 hasLocation W43024148233 @default.
- W4302414823 hasLocation W43024148234 @default.
- W4302414823 hasLocation W43024148235 @default.
- W4302414823 hasOpenAccess W4302414823 @default.
- W4302414823 hasPrimaryLocation W43024148231 @default.
- W4302414823 hasRelatedWork W118730952 @default.
- W4302414823 hasRelatedWork W2196347524 @default.
- W4302414823 hasRelatedWork W2217121807 @default.
- W4302414823 hasRelatedWork W2344767500 @default.
- W4302414823 hasRelatedWork W2617021092 @default.
- W4302414823 hasRelatedWork W2944014318 @default.
- W4302414823 hasRelatedWork W2945642879 @default.
- W4302414823 hasRelatedWork W2962890976 @default.
- W4302414823 hasRelatedWork W4302414823 @default.
- W4302414823 hasRelatedWork W2184215046 @default.
- W4302414823 isParatext "false" @default.
- W4302414823 isRetracted "false" @default.
- W4302414823 workType "article" @default.