Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302425211> ?p ?o ?g. }
- W4302425211 endingPage "1787" @default.
- W4302425211 startingPage "1777" @default.
- W4302425211 abstract "Abstract Aims Most patients who receive implantable cardioverter defibrillators (ICDs) for primary prevention do not receive therapy during the lifespan of the ICD, whilst up to 50% of sudden cardiac death (SCD) occur in individuals who are considered low risk by conventional criteria. Machine learning offers a novel approach to risk stratification for ICD assignment. Methods and results Systematic search was performed in MEDLINE, Embase, Emcare, CINAHL, Cochrane Library, OpenGrey, MedrXiv, arXiv, Scopus, and Web of Science. Studies modelling SCD risk prediction within days to years using machine learning were eligible for inclusion. Transparency and quality of reporting (TRIPOD) and risk of bias (PROBAST) were assessed. A total of 4356 studies were screened with 11 meeting the inclusion criteria with heterogeneous populations, methods, and outcome measures preventing meta-analysis. The study size ranged from 122 to 124 097 participants. Input data sources included demographic, clinical, electrocardiogram, electrophysiological, imaging, and genetic data ranging from 4 to 72 variables per model. The most common outcome metric reported was the area under the receiver operator characteristic (n = 7) ranging between 0.71 and 0.96. In six studies comparing machine learning models and regression, machine learning improved performance in five. No studies adhered to a reporting standard. Five of the papers were at high risk of bias. Conclusion Machine learning for SCD prediction has been under-applied and incorrectly implemented but is ripe for future investigation. It may have some incremental utility in predicting SCD over traditional models. The development of reporting standards for machine learning is required to improve the quality of evidence reporting in the field." @default.
- W4302425211 created "2022-10-06" @default.
- W4302425211 creator A5003830346 @default.
- W4302425211 creator A5005632409 @default.
- W4302425211 creator A5012948647 @default.
- W4302425211 creator A5015240983 @default.
- W4302425211 creator A5020220839 @default.
- W4302425211 creator A5022002096 @default.
- W4302425211 creator A5022030639 @default.
- W4302425211 creator A5026842338 @default.
- W4302425211 creator A5031297080 @default.
- W4302425211 creator A5048818778 @default.
- W4302425211 creator A5049246302 @default.
- W4302425211 creator A5052143104 @default.
- W4302425211 creator A5073765225 @default.
- W4302425211 creator A5076423654 @default.
- W4302425211 creator A5079395832 @default.
- W4302425211 creator A5079933609 @default.
- W4302425211 creator A5081813566 @default.
- W4302425211 date "2022-08-25" @default.
- W4302425211 modified "2023-10-16" @default.
- W4302425211 title "Machine learning in sudden cardiac death risk prediction: a systematic review" @default.
- W4302425211 cites W1524366496 @default.
- W4302425211 cites W1797580880 @default.
- W4302425211 cites W1980801609 @default.
- W4302425211 cites W2012574332 @default.
- W4302425211 cites W2019694480 @default.
- W4302425211 cites W2068188321 @default.
- W4302425211 cites W2075175982 @default.
- W4302425211 cites W2076827851 @default.
- W4302425211 cites W2119361626 @default.
- W4302425211 cites W2122442437 @default.
- W4302425211 cites W2141063967 @default.
- W4302425211 cites W2144359569 @default.
- W4302425211 cites W2549857822 @default.
- W4302425211 cites W2734298333 @default.
- W4302425211 cites W2761033249 @default.
- W4302425211 cites W2785704959 @default.
- W4302425211 cites W2789374978 @default.
- W4302425211 cites W2895763047 @default.
- W4302425211 cites W2899434936 @default.
- W4302425211 cites W2901226889 @default.
- W4302425211 cites W2902644322 @default.
- W4302425211 cites W2902748974 @default.
- W4302425211 cites W2907638671 @default.
- W4302425211 cites W2911211328 @default.
- W4302425211 cites W2919098904 @default.
- W4302425211 cites W2946591451 @default.
- W4302425211 cites W2961090851 @default.
- W4302425211 cites W2965520043 @default.
- W4302425211 cites W2976398475 @default.
- W4302425211 cites W2982580298 @default.
- W4302425211 cites W3007741012 @default.
- W4302425211 cites W3011427124 @default.
- W4302425211 cites W3012755169 @default.
- W4302425211 cites W3018252856 @default.
- W4302425211 cites W3024844568 @default.
- W4302425211 cites W3040882690 @default.
- W4302425211 cites W3042329831 @default.
- W4302425211 cites W3080301222 @default.
- W4302425211 cites W3094171951 @default.
- W4302425211 cites W3101385287 @default.
- W4302425211 cites W3126008863 @default.
- W4302425211 cites W3126980107 @default.
- W4302425211 cites W3127164240 @default.
- W4302425211 doi "https://doi.org/10.1093/europace/euac135" @default.
- W4302425211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36201237" @default.
- W4302425211 hasPublicationYear "2022" @default.
- W4302425211 type Work @default.
- W4302425211 citedByCount "10" @default.
- W4302425211 countsByYear W43024252112023 @default.
- W4302425211 crossrefType "journal-article" @default.
- W4302425211 hasAuthorship W4302425211A5003830346 @default.
- W4302425211 hasAuthorship W4302425211A5005632409 @default.
- W4302425211 hasAuthorship W4302425211A5012948647 @default.
- W4302425211 hasAuthorship W4302425211A5015240983 @default.
- W4302425211 hasAuthorship W4302425211A5020220839 @default.
- W4302425211 hasAuthorship W4302425211A5022002096 @default.
- W4302425211 hasAuthorship W4302425211A5022030639 @default.
- W4302425211 hasAuthorship W4302425211A5026842338 @default.
- W4302425211 hasAuthorship W4302425211A5031297080 @default.
- W4302425211 hasAuthorship W4302425211A5048818778 @default.
- W4302425211 hasAuthorship W4302425211A5049246302 @default.
- W4302425211 hasAuthorship W4302425211A5052143104 @default.
- W4302425211 hasAuthorship W4302425211A5073765225 @default.
- W4302425211 hasAuthorship W4302425211A5076423654 @default.
- W4302425211 hasAuthorship W4302425211A5079395832 @default.
- W4302425211 hasAuthorship W4302425211A5079933609 @default.
- W4302425211 hasAuthorship W4302425211A5081813566 @default.
- W4302425211 hasBestOaLocation W43024252111 @default.
- W4302425211 hasConcept C118552586 @default.
- W4302425211 hasConcept C119857082 @default.
- W4302425211 hasConcept C126322002 @default.
- W4302425211 hasConcept C151956035 @default.
- W4302425211 hasConcept C154945302 @default.
- W4302425211 hasConcept C162324750 @default.
- W4302425211 hasConcept C176217482 @default.
- W4302425211 hasConcept C17744445 @default.