Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302425308> ?p ?o ?g. }
- W4302425308 endingPage "85" @default.
- W4302425308 startingPage "78" @default.
- W4302425308 abstract "High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal expansion coefficients around 2 × 10 −6 per degree kelvin at 300 kelvin. We believe this to be a suitable pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic, and electrical properties." @default.
- W4302425308 created "2022-10-06" @default.
- W4302425308 creator A5003616216 @default.
- W4302425308 creator A5006169663 @default.
- W4302425308 creator A5011774544 @default.
- W4302425308 creator A5012429429 @default.
- W4302425308 creator A5018488407 @default.
- W4302425308 creator A5020554327 @default.
- W4302425308 creator A5026751617 @default.
- W4302425308 creator A5028548033 @default.
- W4302425308 creator A5036281770 @default.
- W4302425308 creator A5041020801 @default.
- W4302425308 creator A5044774001 @default.
- W4302425308 creator A5047496331 @default.
- W4302425308 creator A5054838883 @default.
- W4302425308 creator A5058072378 @default.
- W4302425308 creator A5081320341 @default.
- W4302425308 creator A5083135287 @default.
- W4302425308 creator A5087482969 @default.
- W4302425308 date "2022-10-07" @default.
- W4302425308 modified "2023-10-16" @default.
- W4302425308 title "Machine learning–enabled high-entropy alloy discovery" @default.
- W4302425308 cites W1561572740 @default.
- W4302425308 cites W1970062046 @default.
- W4302425308 cites W1981368803 @default.
- W4302425308 cites W1985485614 @default.
- W4302425308 cites W1987207774 @default.
- W4302425308 cites W1990666192 @default.
- W4302425308 cites W1998579074 @default.
- W4302425308 cites W2003975937 @default.
- W4302425308 cites W2011431354 @default.
- W4302425308 cites W2018229738 @default.
- W4302425308 cites W2034433702 @default.
- W4302425308 cites W2035362396 @default.
- W4302425308 cites W2058085399 @default.
- W4302425308 cites W2068972463 @default.
- W4302425308 cites W2070493638 @default.
- W4302425308 cites W2104196136 @default.
- W4302425308 cites W2107726111 @default.
- W4302425308 cites W2135194391 @default.
- W4302425308 cites W2137983211 @default.
- W4302425308 cites W2138309709 @default.
- W4302425308 cites W2147747021 @default.
- W4302425308 cites W2191029871 @default.
- W4302425308 cites W2337110853 @default.
- W4302425308 cites W2588670596 @default.
- W4302425308 cites W2613327438 @default.
- W4302425308 cites W2731757551 @default.
- W4302425308 cites W2782634521 @default.
- W4302425308 cites W2790666950 @default.
- W4302425308 cites W2792921134 @default.
- W4302425308 cites W2806681928 @default.
- W4302425308 cites W2905677664 @default.
- W4302425308 cites W2946777373 @default.
- W4302425308 cites W2951539866 @default.
- W4302425308 cites W3041202696 @default.
- W4302425308 cites W3095300686 @default.
- W4302425308 cites W3098269892 @default.
- W4302425308 cites W3155146718 @default.
- W4302425308 cites W3174174585 @default.
- W4302425308 cites W3206382947 @default.
- W4302425308 cites W3208323327 @default.
- W4302425308 cites W3211191632 @default.
- W4302425308 cites W3216088529 @default.
- W4302425308 cites W4225998917 @default.
- W4302425308 cites W4244648200 @default.
- W4302425308 cites W4252684946 @default.
- W4302425308 cites W4362223627 @default.
- W4302425308 doi "https://doi.org/10.1126/science.abo4940" @default.
- W4302425308 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36201584" @default.
- W4302425308 hasPublicationYear "2022" @default.
- W4302425308 type Work @default.
- W4302425308 citedByCount "71" @default.
- W4302425308 countsByYear W43024253082022 @default.
- W4302425308 countsByYear W43024253082023 @default.
- W4302425308 crossrefType "journal-article" @default.
- W4302425308 hasAuthorship W4302425308A5003616216 @default.
- W4302425308 hasAuthorship W4302425308A5006169663 @default.
- W4302425308 hasAuthorship W4302425308A5011774544 @default.
- W4302425308 hasAuthorship W4302425308A5012429429 @default.
- W4302425308 hasAuthorship W4302425308A5018488407 @default.
- W4302425308 hasAuthorship W4302425308A5020554327 @default.
- W4302425308 hasAuthorship W4302425308A5026751617 @default.
- W4302425308 hasAuthorship W4302425308A5028548033 @default.
- W4302425308 hasAuthorship W4302425308A5036281770 @default.
- W4302425308 hasAuthorship W4302425308A5041020801 @default.
- W4302425308 hasAuthorship W4302425308A5044774001 @default.
- W4302425308 hasAuthorship W4302425308A5047496331 @default.
- W4302425308 hasAuthorship W4302425308A5054838883 @default.
- W4302425308 hasAuthorship W4302425308A5058072378 @default.
- W4302425308 hasAuthorship W4302425308A5081320341 @default.
- W4302425308 hasAuthorship W4302425308A5083135287 @default.
- W4302425308 hasAuthorship W4302425308A5087482969 @default.
- W4302425308 hasBestOaLocation W43024253082 @default.
- W4302425308 hasConcept C106301342 @default.
- W4302425308 hasConcept C121332964 @default.
- W4302425308 hasConcept C121864883 @default.
- W4302425308 hasConcept C191897082 @default.