Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302774832> ?p ?o ?g. }
- W4302774832 abstract "Abstract Background Pre-operative risk assessment can help clinicians prepare patients for surgery, reducing the risk of perioperative complications, length of hospital stay, readmission and mortality. Further, it can facilitate collaborative decision-making and operational planning. Objective To develop effective pre-operative risk assessment algorithms (referred to as Patient Optimizer or POP) using Machine Learning (ML) that predicts the development of post-operative complications and provides pilot data to inform the design of a larger prospective study. Methods After institutional ethics approval, we developed a baseline model that encapsulates the standard manual approach of combining patient-risk and procedure-risk. In an automated process, additional variables were included and tested with 10-fold cross-validation, and the best performing features were selected. The models were evaluated and confidence intervals calculated using bootstrapping. Clinical expertise was used to restrict the cardinality of categorical variables (e.g. pathology results) by including the most clinically relevant values. The models were created with extreme gradient-boosted trees using XGBoost [1]. We evaluated performance using the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). Data was obtained from a metropolitan university teaching hospital from January 2015 to July 2020. Data collection was restricted to adult patients undergoing elective surgery. Results A total of 11,475 adult admissions were included. For predicting the risk of any postoperative complication, kidney failure and length-of-stay (LOS), POP achieved an AUROC (95%CI) of 0.755 (0.744, 0.767), 0.869 (0.846, 0.891) and 0.841 (0.833, 0.847) respectively and AUPRC of 0.651 (0.632, 0.669), 0.326 (0.293, 0.359) and 0.741 (0.729, 0.753) respectively. For 30-day readmission and in-patient mortality, POP achieved an AUROC (95%CI) of 0.61 (0.587, 0.635) and 0.866 (0.777, 0.943) respectively and AUPRC of 0.116 (0.104, 0.132) and 0.031 (0.015, 0.072) respectively. Conclusion The POP algorithms effectively predicted any post-operative complications, kidney failure and LOS in the sample population. A larger study is justified to improve the algorithm to better predict complications and length of hospital stay. A larger dataset may also improve the prediction of additional specific complications, readmissions and mortality." @default.
- W4302774832 created "2022-10-07" @default.
- W4302774832 creator A5013493145 @default.
- W4302774832 creator A5029075564 @default.
- W4302774832 creator A5047754237 @default.
- W4302774832 creator A5055918362 @default.
- W4302774832 creator A5071004838 @default.
- W4302774832 creator A5081996325 @default.
- W4302774832 creator A5086260890 @default.
- W4302774832 date "2022-10-06" @default.
- W4302774832 modified "2023-09-29" @default.
- W4302774832 title "Development and Validation of ‘Patient Optimizer’ (POP) Algorithms for Predicting Surgical Risk with Machine Learning" @default.
- W4302774832 cites W1966716734 @default.
- W4302774832 cites W1990083046 @default.
- W4302774832 cites W2021613300 @default.
- W4302774832 cites W2064076120 @default.
- W4302774832 cites W2072647517 @default.
- W4302774832 cites W2076812056 @default.
- W4302774832 cites W2115029168 @default.
- W4302774832 cites W2129888542 @default.
- W4302774832 cites W2131149153 @default.
- W4302774832 cites W2140043294 @default.
- W4302774832 cites W2169588513 @default.
- W4302774832 cites W2203122606 @default.
- W4302774832 cites W2299665499 @default.
- W4302774832 cites W2563090218 @default.
- W4302774832 cites W2731899572 @default.
- W4302774832 cites W2793121975 @default.
- W4302774832 cites W2797775685 @default.
- W4302774832 cites W2901997892 @default.
- W4302774832 cites W2914874661 @default.
- W4302774832 cites W2938932803 @default.
- W4302774832 cites W2949955266 @default.
- W4302774832 cites W2954742594 @default.
- W4302774832 cites W2966259815 @default.
- W4302774832 cites W2976348380 @default.
- W4302774832 cites W2980769368 @default.
- W4302774832 cites W3005015612 @default.
- W4302774832 cites W3010467176 @default.
- W4302774832 cites W3012609595 @default.
- W4302774832 cites W3014506484 @default.
- W4302774832 cites W3087223101 @default.
- W4302774832 cites W3120466736 @default.
- W4302774832 cites W3127748371 @default.
- W4302774832 cites W3207597355 @default.
- W4302774832 cites W4234314512 @default.
- W4302774832 cites W4243072198 @default.
- W4302774832 doi "https://doi.org/10.1101/2022.10.03.22280539" @default.
- W4302774832 hasPublicationYear "2022" @default.
- W4302774832 type Work @default.
- W4302774832 citedByCount "0" @default.
- W4302774832 crossrefType "posted-content" @default.
- W4302774832 hasAuthorship W4302774832A5013493145 @default.
- W4302774832 hasAuthorship W4302774832A5029075564 @default.
- W4302774832 hasAuthorship W4302774832A5047754237 @default.
- W4302774832 hasAuthorship W4302774832A5055918362 @default.
- W4302774832 hasAuthorship W4302774832A5071004838 @default.
- W4302774832 hasAuthorship W4302774832A5081996325 @default.
- W4302774832 hasAuthorship W4302774832A5086260890 @default.
- W4302774832 hasBestOaLocation W43027748321 @default.
- W4302774832 hasConcept C11413529 @default.
- W4302774832 hasConcept C119857082 @default.
- W4302774832 hasConcept C12174686 @default.
- W4302774832 hasConcept C126322002 @default.
- W4302774832 hasConcept C141071460 @default.
- W4302774832 hasConcept C149782125 @default.
- W4302774832 hasConcept C154945302 @default.
- W4302774832 hasConcept C207609745 @default.
- W4302774832 hasConcept C31174226 @default.
- W4302774832 hasConcept C33923547 @default.
- W4302774832 hasConcept C34626388 @default.
- W4302774832 hasConcept C38652104 @default.
- W4302774832 hasConcept C41008148 @default.
- W4302774832 hasConcept C44249647 @default.
- W4302774832 hasConcept C58471807 @default.
- W4302774832 hasConcept C71924100 @default.
- W4302774832 hasConceptScore W4302774832C11413529 @default.
- W4302774832 hasConceptScore W4302774832C119857082 @default.
- W4302774832 hasConceptScore W4302774832C12174686 @default.
- W4302774832 hasConceptScore W4302774832C126322002 @default.
- W4302774832 hasConceptScore W4302774832C141071460 @default.
- W4302774832 hasConceptScore W4302774832C149782125 @default.
- W4302774832 hasConceptScore W4302774832C154945302 @default.
- W4302774832 hasConceptScore W4302774832C207609745 @default.
- W4302774832 hasConceptScore W4302774832C31174226 @default.
- W4302774832 hasConceptScore W4302774832C33923547 @default.
- W4302774832 hasConceptScore W4302774832C34626388 @default.
- W4302774832 hasConceptScore W4302774832C38652104 @default.
- W4302774832 hasConceptScore W4302774832C41008148 @default.
- W4302774832 hasConceptScore W4302774832C44249647 @default.
- W4302774832 hasConceptScore W4302774832C58471807 @default.
- W4302774832 hasConceptScore W4302774832C71924100 @default.
- W4302774832 hasLocation W43027748321 @default.
- W4302774832 hasOpenAccess W4302774832 @default.
- W4302774832 hasPrimaryLocation W43027748321 @default.
- W4302774832 hasRelatedWork W2027110585 @default.
- W4302774832 hasRelatedWork W2079135485 @default.
- W4302774832 hasRelatedWork W2900794834 @default.
- W4302774832 hasRelatedWork W3097058703 @default.
- W4302774832 hasRelatedWork W3208351334 @default.