Matches in SemOpenAlex for { <https://semopenalex.org/work/W4302779279> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4302779279 abstract "Mixture modelling involves explaining some observed evidence using a combination of probability distributions. The crux of the problem is the inference of an optimal number of mixture components and their corresponding parameters. This paper discusses unsupervised learning of mixture models using the Bayesian Minimum Message Length (MML) criterion. To demonstrate the effectiveness of search and inference of mixture parameters using the proposed approach, we select two key probability distributions, each handling fundamentally different types of data: the multivariate Gaussian distribution to address mixture modelling of data distributed in Euclidean space, and the multivariate von Mises-Fisher (vMF) distribution to address mixture modelling of directional data distributed on a unit hypersphere. The key contributions of this paper, in addition to the general search and inference methodology, include the derivation of MML expressions for encoding the data using multivariate Gaussian and von Mises-Fisher distributions, and the analytical derivation of the MML estimates of the parameters of the two distributions. Our approach is tested on simulated and real world data sets. For instance, we infer vMF mixtures that concisely explain experimentally determined three-dimensional protein conformations, providing an effective null model description of protein structures that is central to many inference problems in structural bioinformatics. The experimental results demonstrate that the performance of our proposed search and inference method along with the encoding schemes improve on the state of the art mixture modelling techniques." @default.
- W4302779279 created "2022-10-07" @default.
- W4302779279 creator A5037254330 @default.
- W4302779279 creator A5065385022 @default.
- W4302779279 date "2015-02-26" @default.
- W4302779279 modified "2023-10-18" @default.
- W4302779279 title "Minimum message length estimation of mixtures of multivariate Gaussian and von Mises-Fisher distributions" @default.
- W4302779279 doi "https://doi.org/10.48550/arxiv.1502.07813" @default.
- W4302779279 hasPublicationYear "2015" @default.
- W4302779279 type Work @default.
- W4302779279 citedByCount "0" @default.
- W4302779279 crossrefType "posted-content" @default.
- W4302779279 hasAuthorship W4302779279A5037254330 @default.
- W4302779279 hasAuthorship W4302779279A5065385022 @default.
- W4302779279 hasBestOaLocation W43027792791 @default.
- W4302779279 hasConcept C105795698 @default.
- W4302779279 hasConcept C107673813 @default.
- W4302779279 hasConcept C11413529 @default.
- W4302779279 hasConcept C154945302 @default.
- W4302779279 hasConcept C160234255 @default.
- W4302779279 hasConcept C161584116 @default.
- W4302779279 hasConcept C177384507 @default.
- W4302779279 hasConcept C2776214188 @default.
- W4302779279 hasConcept C2776562905 @default.
- W4302779279 hasConcept C33923547 @default.
- W4302779279 hasConcept C41008148 @default.
- W4302779279 hasConcept C61224824 @default.
- W4302779279 hasConcept C87465248 @default.
- W4302779279 hasConceptScore W4302779279C105795698 @default.
- W4302779279 hasConceptScore W4302779279C107673813 @default.
- W4302779279 hasConceptScore W4302779279C11413529 @default.
- W4302779279 hasConceptScore W4302779279C154945302 @default.
- W4302779279 hasConceptScore W4302779279C160234255 @default.
- W4302779279 hasConceptScore W4302779279C161584116 @default.
- W4302779279 hasConceptScore W4302779279C177384507 @default.
- W4302779279 hasConceptScore W4302779279C2776214188 @default.
- W4302779279 hasConceptScore W4302779279C2776562905 @default.
- W4302779279 hasConceptScore W4302779279C33923547 @default.
- W4302779279 hasConceptScore W4302779279C41008148 @default.
- W4302779279 hasConceptScore W4302779279C61224824 @default.
- W4302779279 hasConceptScore W4302779279C87465248 @default.
- W4302779279 hasLocation W43027792791 @default.
- W4302779279 hasOpenAccess W4302779279 @default.
- W4302779279 hasPrimaryLocation W43027792791 @default.
- W4302779279 hasRelatedWork W1999115788 @default.
- W4302779279 hasRelatedWork W1999183547 @default.
- W4302779279 hasRelatedWork W2060488211 @default.
- W4302779279 hasRelatedWork W2753218748 @default.
- W4302779279 hasRelatedWork W2774409638 @default.
- W4302779279 hasRelatedWork W2951616680 @default.
- W4302779279 hasRelatedWork W3023471969 @default.
- W4302779279 hasRelatedWork W3028721798 @default.
- W4302779279 hasRelatedWork W4231471330 @default.
- W4302779279 hasRelatedWork W776706285 @default.
- W4302779279 isParatext "false" @default.
- W4302779279 isRetracted "false" @default.
- W4302779279 workType "article" @default.