Matches in SemOpenAlex for { <https://semopenalex.org/work/W4303081471> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4303081471 abstract "We construct the fundamental solution (the heat kernel) $p^{kappa}$ to the equation $partial_t=mathcal{L}^{kappa}$, where under certain assumptions the operator $mathcal{L}^{kappa}$ takes one of the following forms, begin{align*} mathcal{L}^{kappa}f(x)&:= int_{mathbb{R}^d}( f(x+z)-f(x)- 1_{|z|<1} left<z,nabla f(x)right>)kappa(x,z)J(z), dz ,, mathcal{L}^{kappa}f(x)&:= int_{mathbb{R}^d}( f(x+z)-f(x))kappa(x,z)J(z), dz,, mathcal{L}^{kappa}f(x)&:= frac1{2}int_{mathbb{R}^d}( f(x+z)+f(x-z)-2f(x))kappa(x,z)J(z), dz,. end{align*} In particular, $Jcolon mathbb{R}^d to [0,infty]$ is a L'evy density, i.e., $int_{mathbb{R}^d}(1land |x|^2)J(x)dx<infty$. The function $kappa(x,z)$ is assumed to be Borel measurable on $mathbb{R}^dtimes mathbb{R}^d$ satisfying $0<kappa_0leq kappa(x,z)leq kappa_1$, and $|kappa(x,z)-kappa(y,z)|leq kappa_2|x-y|^{beta}$ for some $betain (0, 1)$. We prove the uniqueness, estimates, regularity and other qualitative properties of $p^{kappa}$." @default.
- W4303081471 created "2022-10-07" @default.
- W4303081471 creator A5032951586 @default.
- W4303081471 creator A5054398766 @default.
- W4303081471 date "2018-04-04" @default.
- W4303081471 modified "2023-10-16" @default.
- W4303081471 title "Heat kernels of non-symmetric L'evy-type operators" @default.
- W4303081471 doi "https://doi.org/10.48550/arxiv.1804.01313" @default.
- W4303081471 hasPublicationYear "2018" @default.
- W4303081471 type Work @default.
- W4303081471 citedByCount "0" @default.
- W4303081471 crossrefType "posted-content" @default.
- W4303081471 hasAuthorship W4303081471A5032951586 @default.
- W4303081471 hasAuthorship W4303081471A5054398766 @default.
- W4303081471 hasBestOaLocation W43030814711 @default.
- W4303081471 hasConcept C114614502 @default.
- W4303081471 hasConcept C121332964 @default.
- W4303081471 hasConcept C134306372 @default.
- W4303081471 hasConcept C18903297 @default.
- W4303081471 hasConcept C2524010 @default.
- W4303081471 hasConcept C2777021972 @default.
- W4303081471 hasConcept C2777299769 @default.
- W4303081471 hasConcept C2778724333 @default.
- W4303081471 hasConcept C2779557605 @default.
- W4303081471 hasConcept C33923547 @default.
- W4303081471 hasConcept C54207081 @default.
- W4303081471 hasConcept C62520636 @default.
- W4303081471 hasConcept C86803240 @default.
- W4303081471 hasConceptScore W4303081471C114614502 @default.
- W4303081471 hasConceptScore W4303081471C121332964 @default.
- W4303081471 hasConceptScore W4303081471C134306372 @default.
- W4303081471 hasConceptScore W4303081471C18903297 @default.
- W4303081471 hasConceptScore W4303081471C2524010 @default.
- W4303081471 hasConceptScore W4303081471C2777021972 @default.
- W4303081471 hasConceptScore W4303081471C2777299769 @default.
- W4303081471 hasConceptScore W4303081471C2778724333 @default.
- W4303081471 hasConceptScore W4303081471C2779557605 @default.
- W4303081471 hasConceptScore W4303081471C33923547 @default.
- W4303081471 hasConceptScore W4303081471C54207081 @default.
- W4303081471 hasConceptScore W4303081471C62520636 @default.
- W4303081471 hasConceptScore W4303081471C86803240 @default.
- W4303081471 hasLocation W43030814711 @default.
- W4303081471 hasOpenAccess W4303081471 @default.
- W4303081471 hasPrimaryLocation W43030814711 @default.
- W4303081471 hasRelatedWork W1993453399 @default.
- W4303081471 hasRelatedWork W2014702954 @default.
- W4303081471 hasRelatedWork W2044115466 @default.
- W4303081471 hasRelatedWork W2320758659 @default.
- W4303081471 hasRelatedWork W2350012146 @default.
- W4303081471 hasRelatedWork W2964050944 @default.
- W4303081471 hasRelatedWork W2994594826 @default.
- W4303081471 hasRelatedWork W4287863145 @default.
- W4303081471 hasRelatedWork W4287998130 @default.
- W4303081471 hasRelatedWork W4311784627 @default.
- W4303081471 isParatext "false" @default.
- W4303081471 isRetracted "false" @default.
- W4303081471 workType "article" @default.