Matches in SemOpenAlex for { <https://semopenalex.org/work/W4303444716> ?p ?o ?g. }
- W4303444716 endingPage "e10956" @default.
- W4303444716 startingPage "e10956" @default.
- W4303444716 abstract "In this paper, a review of Metaheuristic Optimization Techniques (MOT) which are currently in use for optimization in a vast range of problems, is presented. MOT are known for their simplicity and stochastic nature and successfully applied to solve complex engineering problems. Although there exist various categories of MOT, the techniques from swarm intelligence is reviewed in this paper. An explanation of the theoretical foundation upon which each algorithm is based is provided, along with the relevant mathematical models that explain how an algorithm attempts to obtain the best solution to a problem. The paper also reviews the applications of swarm-based MOT to the control of the doubly fed induction generator (DFIG). Particular attention is given to control of the DFIG for wind energy applications. Control of the DFIG is generally realized via the use of PI controllers. While various PI controller tuning methods are well established (such as the Ziegler–Nichols and Cohen–Coon methods), these methods produce satisfactory results, and often fail to meet the stringent levels of control presently required. Due to this fact, as well as the current success of MOT in engineering, the application of MOT to the control of the DFIG could be promising area of research. The results of the study show that although the various swarm-based MOT differ from each other in terms of aspects such as complexity and advantages, they are all based on the concept of randomness, and always attempt to produce the best possible solution. It was also observed that various swarm-based MOT displays the demerit of getting easily trapped in the local optimum, however various advancements have been proposed to correct such an issue. Based on the results of the application of these techniques to other engineering problems, their application to the DFIG could yield exceptional results." @default.
- W4303444716 created "2022-10-07" @default.
- W4303444716 creator A5027538775 @default.
- W4303444716 creator A5029579989 @default.
- W4303444716 date "2022-10-01" @default.
- W4303444716 modified "2023-10-14" @default.
- W4303444716 title "A review of swarm-based metaheuristic optimization techniques and their application to doubly fed induction generator" @default.
- W4303444716 cites W1935544013 @default.
- W4303444716 cites W2001979953 @default.
- W4303444716 cites W2010137614 @default.
- W4303444716 cites W2015709857 @default.
- W4303444716 cites W2027435110 @default.
- W4303444716 cites W2047703585 @default.
- W4303444716 cites W2059969426 @default.
- W4303444716 cites W2114652055 @default.
- W4303444716 cites W2118622102 @default.
- W4303444716 cites W2121394390 @default.
- W4303444716 cites W2143560894 @default.
- W4303444716 cites W2161201021 @default.
- W4303444716 cites W2168747298 @default.
- W4303444716 cites W2170024693 @default.
- W4303444716 cites W2185790525 @default.
- W4303444716 cites W2275763456 @default.
- W4303444716 cites W2290883490 @default.
- W4303444716 cites W2308407318 @default.
- W4303444716 cites W2515764746 @default.
- W4303444716 cites W2547937424 @default.
- W4303444716 cites W2561767826 @default.
- W4303444716 cites W2580244657 @default.
- W4303444716 cites W2593737667 @default.
- W4303444716 cites W2617800229 @default.
- W4303444716 cites W2730000459 @default.
- W4303444716 cites W2744457139 @default.
- W4303444716 cites W2750209710 @default.
- W4303444716 cites W2758310066 @default.
- W4303444716 cites W2765530022 @default.
- W4303444716 cites W2768281630 @default.
- W4303444716 cites W2789904331 @default.
- W4303444716 cites W2797485770 @default.
- W4303444716 cites W2805076621 @default.
- W4303444716 cites W2902191103 @default.
- W4303444716 cites W2905941926 @default.
- W4303444716 cites W2914717758 @default.
- W4303444716 cites W2935318792 @default.
- W4303444716 cites W2936409993 @default.
- W4303444716 cites W2941901799 @default.
- W4303444716 cites W2943363397 @default.
- W4303444716 cites W2944180286 @default.
- W4303444716 cites W2944479754 @default.
- W4303444716 cites W2954359514 @default.
- W4303444716 cites W2955207303 @default.
- W4303444716 cites W2964082281 @default.
- W4303444716 cites W2964619955 @default.
- W4303444716 cites W2965990973 @default.
- W4303444716 cites W2966840128 @default.
- W4303444716 cites W2969684095 @default.
- W4303444716 cites W2969709446 @default.
- W4303444716 cites W2983337038 @default.
- W4303444716 cites W2986150947 @default.
- W4303444716 cites W2994696538 @default.
- W4303444716 cites W3000166736 @default.
- W4303444716 cites W3001122366 @default.
- W4303444716 cites W3004600292 @default.
- W4303444716 cites W3007722413 @default.
- W4303444716 cites W3014186522 @default.
- W4303444716 cites W3016995727 @default.
- W4303444716 cites W3017597545 @default.
- W4303444716 cites W3018946592 @default.
- W4303444716 cites W3020816427 @default.
- W4303444716 cites W3023271174 @default.
- W4303444716 cites W3023596779 @default.
- W4303444716 cites W3024077117 @default.
- W4303444716 cites W3025933392 @default.
- W4303444716 cites W3030260003 @default.
- W4303444716 cites W3034517742 @default.
- W4303444716 cites W3084522097 @default.
- W4303444716 cites W3088569169 @default.
- W4303444716 cites W3097250109 @default.
- W4303444716 cites W3114883143 @default.
- W4303444716 cites W3115211887 @default.
- W4303444716 cites W3117175330 @default.
- W4303444716 cites W3120845323 @default.
- W4303444716 cites W3123071601 @default.
- W4303444716 cites W3130191186 @default.
- W4303444716 cites W3143807482 @default.
- W4303444716 cites W4232486365 @default.
- W4303444716 cites W883434633 @default.
- W4303444716 cites W3157068021 @default.
- W4303444716 doi "https://doi.org/10.1016/j.heliyon.2022.e10956" @default.
- W4303444716 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36262300" @default.
- W4303444716 hasPublicationYear "2022" @default.
- W4303444716 type Work @default.
- W4303444716 citedByCount "7" @default.
- W4303444716 countsByYear W43034447162023 @default.
- W4303444716 crossrefType "journal-article" @default.
- W4303444716 hasAuthorship W4303444716A5027538775 @default.
- W4303444716 hasAuthorship W4303444716A5029579989 @default.
- W4303444716 hasBestOaLocation W43034447161 @default.