Matches in SemOpenAlex for { <https://semopenalex.org/work/W4303449228> ?p ?o ?g. }
- W4303449228 abstract "Cerenkov Luminescence Tomography (CLT) is a novel and potential imaging modality which can display the three-dimensional distribution of radioactive probes. However, due to severe ill-posed inverse problem, obtaining accurate reconstruction results is still a challenge for traditional model-based methods. The recently emerged deep learning-based methods can directly learn the mapping relation between the surface photon intensity and the distribution of the radioactive source, which effectively improves the performance of CLT reconstruction. However, the previously proposed deep learning-based methods cannot work well when the order of input is disarranged. In this paper, a novel 3D graph convolution-based residual network, GCR-Net, is proposed, which can obtain a robust and accurate reconstruction result from the photon intensity of the surface. Additionally, it is proved that the network is insensitive to the order of input. The performance of this method was evaluated with numerical simulations and in vivo experiments. The results demonstrated that compared with the existing methods, the proposed method can achieve efficient and accurate reconstruction in localization and shape recovery by utilizing three-dimensional information." @default.
- W4303449228 created "2022-10-07" @default.
- W4303449228 creator A5009095415 @default.
- W4303449228 creator A5019333214 @default.
- W4303449228 creator A5020588035 @default.
- W4303449228 creator A5021602753 @default.
- W4303449228 creator A5024146865 @default.
- W4303449228 creator A5028972611 @default.
- W4303449228 creator A5037164159 @default.
- W4303449228 creator A5042607903 @default.
- W4303449228 creator A5053033433 @default.
- W4303449228 creator A5070225397 @default.
- W4303449228 date "2022-11-19" @default.
- W4303449228 modified "2023-10-16" @default.
- W4303449228 title "GCR-Net: 3D Graph convolution-based residual network for robust reconstruction in cerenkov luminescence tomography" @default.
- W4303449228 cites W1831578893 @default.
- W4303449228 cites W1973308830 @default.
- W4303449228 cites W1976297046 @default.
- W4303449228 cites W1980913229 @default.
- W4303449228 cites W1982296469 @default.
- W4303449228 cites W1996715706 @default.
- W4303449228 cites W2003213480 @default.
- W4303449228 cites W2003778635 @default.
- W4303449228 cites W2014926225 @default.
- W4303449228 cites W2018787756 @default.
- W4303449228 cites W2035071482 @default.
- W4303449228 cites W2038736830 @default.
- W4303449228 cites W2039879564 @default.
- W4303449228 cites W2057957523 @default.
- W4303449228 cites W2065510243 @default.
- W4303449228 cites W2065646079 @default.
- W4303449228 cites W2070347283 @default.
- W4303449228 cites W2073383431 @default.
- W4303449228 cites W2077204942 @default.
- W4303449228 cites W2084063088 @default.
- W4303449228 cites W2086497446 @default.
- W4303449228 cites W2106030748 @default.
- W4303449228 cites W2112104710 @default.
- W4303449228 cites W2126334759 @default.
- W4303449228 cites W2136960759 @default.
- W4303449228 cites W2141649924 @default.
- W4303449228 cites W2150206925 @default.
- W4303449228 cites W2153000953 @default.
- W4303449228 cites W2158070705 @default.
- W4303449228 cites W2258293330 @default.
- W4303449228 cites W2273057236 @default.
- W4303449228 cites W2345877254 @default.
- W4303449228 cites W2437599296 @default.
- W4303449228 cites W2736164201 @default.
- W4303449228 cites W2765515562 @default.
- W4303449228 cites W2910774109 @default.
- W4303449228 cites W2951958915 @default.
- W4303449228 cites W2991055075 @default.
- W4303449228 cites W3014772244 @default.
- W4303449228 cites W3020383130 @default.
- W4303449228 cites W3105538085 @default.
- W4303449228 cites W3135782400 @default.
- W4303449228 cites W3154589547 @default.
- W4303449228 cites W3207715556 @default.
- W4303449228 cites W4225910646 @default.
- W4303449228 doi "https://doi.org/10.1142/s179354582245002x" @default.
- W4303449228 hasPublicationYear "2022" @default.
- W4303449228 type Work @default.
- W4303449228 citedByCount "1" @default.
- W4303449228 countsByYear W43034492282023 @default.
- W4303449228 crossrefType "journal-article" @default.
- W4303449228 hasAuthorship W4303449228A5009095415 @default.
- W4303449228 hasAuthorship W4303449228A5019333214 @default.
- W4303449228 hasAuthorship W4303449228A5020588035 @default.
- W4303449228 hasAuthorship W4303449228A5021602753 @default.
- W4303449228 hasAuthorship W4303449228A5024146865 @default.
- W4303449228 hasAuthorship W4303449228A5028972611 @default.
- W4303449228 hasAuthorship W4303449228A5037164159 @default.
- W4303449228 hasAuthorship W4303449228A5042607903 @default.
- W4303449228 hasAuthorship W4303449228A5053033433 @default.
- W4303449228 hasAuthorship W4303449228A5070225397 @default.
- W4303449228 hasBestOaLocation W43034492281 @default.
- W4303449228 hasConcept C108583219 @default.
- W4303449228 hasConcept C11413529 @default.
- W4303449228 hasConcept C120665830 @default.
- W4303449228 hasConcept C121332964 @default.
- W4303449228 hasConcept C132525143 @default.
- W4303449228 hasConcept C134306372 @default.
- W4303449228 hasConcept C135252773 @default.
- W4303449228 hasConcept C141379421 @default.
- W4303449228 hasConcept C154945302 @default.
- W4303449228 hasConcept C155512373 @default.
- W4303449228 hasConcept C163716698 @default.
- W4303449228 hasConcept C186060115 @default.
- W4303449228 hasConcept C20885615 @default.
- W4303449228 hasConcept C2524010 @default.
- W4303449228 hasConcept C2776799497 @default.
- W4303449228 hasConcept C2779898584 @default.
- W4303449228 hasConcept C2780441642 @default.
- W4303449228 hasConcept C2989005 @default.
- W4303449228 hasConcept C31972630 @default.
- W4303449228 hasConcept C33923547 @default.
- W4303449228 hasConcept C41008148 @default.
- W4303449228 hasConcept C45347329 @default.
- W4303449228 hasConcept C50644808 @default.