Matches in SemOpenAlex for { <https://semopenalex.org/work/W4303579077> ?p ?o ?g. }
- W4303579077 abstract "Abstract Drought tolerance in maize is a complex and polygenic trait, especially in the seedling stage. In plant breeding, complex genetic traits can be improved by genomic selection (GS), which has become a practical and effective breeding tool. In the present study, a natural maize population named Northeast China core population (NCCP) consisting of 379 inbred lines were genotyped with diversity arrays technology (DArT) and genotyping-by-sequencing (GBS) platforms. Target traits of seedling emergence rate (ER), seedling plant height (SPH), and grain yield (GY) were evaluated under two natural drought stress environments in northeast China. Adequate genetic variations were observed for all the target traits, but they were divergent across environments. Similarly, the heritability of the target trait also varied across years and environments, the heritabilities in 2019 (0.88, 0.82, 0.85 for ER, SPH, GY) were higher than those in 2020 (0.65, 0.53, 0.33) and cross-2-years (0.32, 0.26, 0.33). In total, three marker datasets, 11,865 SilicoDArT markers obtained from the DArT-seq platform, 7837 SNPs obtained from the DArT-seq platform, and 91,003 SNPs obtained from the GBS platform, were used for GS analysis after quality control. The results of phylogenetic trees showed that broad genetic diversity existed in the NCCP population. Genomic prediction results showed that the average prediction accuracies estimated using the DArT SNP dataset under the two-fold cross-validation scheme were 0.27, 0.19, and 0.33, for ER, SPH, and GY, respectively. The result of SilicoDArT is close to the SNPs from DArT-seq, those were 0.26, 0.22, and 0.33. For the trait with lower heritability, the prediction accuracy can be improved using the dataset filtered by linkage disequilibrium. For the same trait, the prediction accuracies estimated with two DArT marker datasets were consistently higher than that estimated with the GBS SNP dataset under the same genotyping cost. The prediction accuracy was improved by controlling population structure and marker quality, even though the marker density was reduced. The prediction accuracies were improved by more than 30% using the significant-associated SNPs. Due to the complexity of drought tolerance under the natural stress environments, multiple years of data need to be accumulated to improve prediction accuracy by reducing genotype-by-environment interaction. Modeling genotype-by-environment interaction into genomic prediction needs to be further developed for improving drought tolerance in maize. The results obtained from the present study provides valuable pathway for improving drought tolerance in maize using GS." @default.
- W4303579077 created "2022-10-08" @default.
- W4303579077 creator A5004495808 @default.
- W4303579077 creator A5009590736 @default.
- W4303579077 creator A5017644796 @default.
- W4303579077 creator A5018236992 @default.
- W4303579077 creator A5025499674 @default.
- W4303579077 creator A5028790437 @default.
- W4303579077 creator A5032437498 @default.
- W4303579077 creator A5038517619 @default.
- W4303579077 creator A5057649758 @default.
- W4303579077 creator A5058712185 @default.
- W4303579077 creator A5059870571 @default.
- W4303579077 creator A5063975688 @default.
- W4303579077 creator A5072226819 @default.
- W4303579077 creator A5073965149 @default.
- W4303579077 creator A5076158905 @default.
- W4303579077 creator A5076788202 @default.
- W4303579077 creator A5078954271 @default.
- W4303579077 creator A5081298273 @default.
- W4303579077 date "2022-10-08" @default.
- W4303579077 modified "2023-09-25" @default.
- W4303579077 title "Genomic prediction of drought tolerance during seedling stage in maize using low-cost molecular markers" @default.
- W4303579077 cites W1808522525 @default.
- W4303579077 cites W1928998639 @default.
- W4303579077 cites W1998447523 @default.
- W4303579077 cites W2005393148 @default.
- W4303579077 cites W2031525750 @default.
- W4303579077 cites W2034433729 @default.
- W4303579077 cites W2048684300 @default.
- W4303579077 cites W2063021966 @default.
- W4303579077 cites W2064013109 @default.
- W4303579077 cites W2067715889 @default.
- W4303579077 cites W2110035718 @default.
- W4303579077 cites W2127684760 @default.
- W4303579077 cites W2134036574 @default.
- W4303579077 cites W2138509975 @default.
- W4303579077 cites W2148306906 @default.
- W4303579077 cites W2159474015 @default.
- W4303579077 cites W2166033750 @default.
- W4303579077 cites W2167144217 @default.
- W4303579077 cites W2326118652 @default.
- W4303579077 cites W2409167922 @default.
- W4303579077 cites W2440495051 @default.
- W4303579077 cites W2474749967 @default.
- W4303579077 cites W2515929567 @default.
- W4303579077 cites W2526851727 @default.
- W4303579077 cites W2561267978 @default.
- W4303579077 cites W2570963917 @default.
- W4303579077 cites W2617076315 @default.
- W4303579077 cites W2617322460 @default.
- W4303579077 cites W2618271825 @default.
- W4303579077 cites W2760544538 @default.
- W4303579077 cites W2766480920 @default.
- W4303579077 cites W2793475875 @default.
- W4303579077 cites W2799376935 @default.
- W4303579077 cites W2807131885 @default.
- W4303579077 cites W2913977798 @default.
- W4303579077 cites W2915301594 @default.
- W4303579077 cites W2923865413 @default.
- W4303579077 cites W2970259886 @default.
- W4303579077 cites W3011100961 @default.
- W4303579077 cites W3021273452 @default.
- W4303579077 cites W3032985406 @default.
- W4303579077 cites W3033701474 @default.
- W4303579077 cites W3049764871 @default.
- W4303579077 cites W3090162238 @default.
- W4303579077 cites W3092882668 @default.
- W4303579077 cites W3118630218 @default.
- W4303579077 cites W3135035839 @default.
- W4303579077 cites W4230921330 @default.
- W4303579077 cites W50118476 @default.
- W4303579077 doi "https://doi.org/10.1007/s10681-022-03103-y" @default.
- W4303579077 hasPublicationYear "2022" @default.
- W4303579077 type Work @default.
- W4303579077 citedByCount "2" @default.
- W4303579077 countsByYear W43035790772023 @default.
- W4303579077 crossrefType "journal-article" @default.
- W4303579077 hasAuthorship W4303579077A5004495808 @default.
- W4303579077 hasAuthorship W4303579077A5009590736 @default.
- W4303579077 hasAuthorship W4303579077A5017644796 @default.
- W4303579077 hasAuthorship W4303579077A5018236992 @default.
- W4303579077 hasAuthorship W4303579077A5025499674 @default.
- W4303579077 hasAuthorship W4303579077A5028790437 @default.
- W4303579077 hasAuthorship W4303579077A5032437498 @default.
- W4303579077 hasAuthorship W4303579077A5038517619 @default.
- W4303579077 hasAuthorship W4303579077A5057649758 @default.
- W4303579077 hasAuthorship W4303579077A5058712185 @default.
- W4303579077 hasAuthorship W4303579077A5059870571 @default.
- W4303579077 hasAuthorship W4303579077A5063975688 @default.
- W4303579077 hasAuthorship W4303579077A5072226819 @default.
- W4303579077 hasAuthorship W4303579077A5073965149 @default.
- W4303579077 hasAuthorship W4303579077A5076158905 @default.
- W4303579077 hasAuthorship W4303579077A5076788202 @default.
- W4303579077 hasAuthorship W4303579077A5078954271 @default.
- W4303579077 hasAuthorship W4303579077A5081298273 @default.
- W4303579077 hasBestOaLocation W43035790771 @default.
- W4303579077 hasConcept C104317684 @default.
- W4303579077 hasConcept C106934330 @default.
- W4303579077 hasConcept C144024400 @default.