Matches in SemOpenAlex for { <https://semopenalex.org/work/W4303628264> ?p ?o ?g. }
- W4303628264 endingPage "2420" @default.
- W4303628264 startingPage "2420" @default.
- W4303628264 abstract "Bone diseases are common and can result in various musculoskeletal conditions (MC). An estimated 1.71 billion patients suffer from musculoskeletal problems worldwide. Apart from musculoskeletal fractures, femoral neck injuries, knee osteoarthritis, and fractures are very common bone diseases, and the rate is expected to double in the next 30 years. Therefore, proper and timely diagnosis and treatment of a fractured patient are crucial. Contrastingly, missed fractures are a common prognosis failure in accidents and emergencies. This causes complications and delays in patients' treatment and care. These days, artificial intelligence (AI) and, more specifically, deep learning (DL) are receiving significant attention to assist radiologists in bone fracture detection. DL can be widely used in medical image analysis. Some studies in traumatology and orthopaedics have shown the use and potential of DL in diagnosing fractures and diseases from radiographs. In this systematic review, we provide an overview of the use of DL in bone imaging to help radiologists to detect various abnormalities, particularly fractures. We have also discussed the challenges and problems faced in the DL-based method, and the future of DL in bone imaging." @default.
- W4303628264 created "2022-10-08" @default.
- W4303628264 creator A5029766655 @default.
- W4303628264 creator A5057485566 @default.
- W4303628264 date "2022-10-07" @default.
- W4303628264 modified "2023-09-30" @default.
- W4303628264 title "Bone Fracture Detection Using Deep Supervised Learning from Radiological Images: A Paradigm Shift" @default.
- W4303628264 cites W1637283730 @default.
- W4303628264 cites W2042716610 @default.
- W4303628264 cites W2098186350 @default.
- W4303628264 cites W2117539524 @default.
- W4303628264 cites W2462030629 @default.
- W4303628264 cites W2541540934 @default.
- W4303628264 cites W2557738935 @default.
- W4303628264 cites W2558050786 @default.
- W4303628264 cites W2596318590 @default.
- W4303628264 cites W2596649969 @default.
- W4303628264 cites W2733840449 @default.
- W4303628264 cites W2745394387 @default.
- W4303628264 cites W2776581140 @default.
- W4303628264 cites W2777533257 @default.
- W4303628264 cites W2793251588 @default.
- W4303628264 cites W2800043213 @default.
- W4303628264 cites W2811095288 @default.
- W4303628264 cites W2885241307 @default.
- W4303628264 cites W2897228760 @default.
- W4303628264 cites W2898029699 @default.
- W4303628264 cites W2899835486 @default.
- W4303628264 cites W2902250535 @default.
- W4303628264 cites W2912504222 @default.
- W4303628264 cites W2915041319 @default.
- W4303628264 cites W2934730619 @default.
- W4303628264 cites W2935090763 @default.
- W4303628264 cites W2940354300 @default.
- W4303628264 cites W2948196832 @default.
- W4303628264 cites W2964899679 @default.
- W4303628264 cites W2968320133 @default.
- W4303628264 cites W2969590833 @default.
- W4303628264 cites W2988912012 @default.
- W4303628264 cites W2990286494 @default.
- W4303628264 cites W2991676991 @default.
- W4303628264 cites W3082673362 @default.
- W4303628264 cites W3112329410 @default.
- W4303628264 cites W3120795911 @default.
- W4303628264 cites W3129743251 @default.
- W4303628264 cites W3130593802 @default.
- W4303628264 cites W3134854716 @default.
- W4303628264 cites W3185202723 @default.
- W4303628264 cites W3207943550 @default.
- W4303628264 cites W4206176868 @default.
- W4303628264 cites W4210892599 @default.
- W4303628264 cites W4212835216 @default.
- W4303628264 cites W4214562605 @default.
- W4303628264 cites W4223899585 @default.
- W4303628264 cites W4295277198 @default.
- W4303628264 doi "https://doi.org/10.3390/diagnostics12102420" @default.
- W4303628264 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36292109" @default.
- W4303628264 hasPublicationYear "2022" @default.
- W4303628264 type Work @default.
- W4303628264 citedByCount "22" @default.
- W4303628264 countsByYear W43036282642022 @default.
- W4303628264 countsByYear W43036282642023 @default.
- W4303628264 crossrefType "journal-article" @default.
- W4303628264 hasAuthorship W4303628264A5029766655 @default.
- W4303628264 hasAuthorship W4303628264A5057485566 @default.
- W4303628264 hasBestOaLocation W43036282641 @default.
- W4303628264 hasConcept C126838900 @default.
- W4303628264 hasConcept C141071460 @default.
- W4303628264 hasConcept C142724271 @default.
- W4303628264 hasConcept C190892606 @default.
- W4303628264 hasConcept C204787440 @default.
- W4303628264 hasConcept C2776164576 @default.
- W4303628264 hasConcept C31601959 @default.
- W4303628264 hasConcept C36454342 @default.
- W4303628264 hasConcept C537825242 @default.
- W4303628264 hasConcept C68312169 @default.
- W4303628264 hasConcept C71924100 @default.
- W4303628264 hasConceptScore W4303628264C126838900 @default.
- W4303628264 hasConceptScore W4303628264C141071460 @default.
- W4303628264 hasConceptScore W4303628264C142724271 @default.
- W4303628264 hasConceptScore W4303628264C190892606 @default.
- W4303628264 hasConceptScore W4303628264C204787440 @default.
- W4303628264 hasConceptScore W4303628264C2776164576 @default.
- W4303628264 hasConceptScore W4303628264C31601959 @default.
- W4303628264 hasConceptScore W4303628264C36454342 @default.
- W4303628264 hasConceptScore W4303628264C537825242 @default.
- W4303628264 hasConceptScore W4303628264C68312169 @default.
- W4303628264 hasConceptScore W4303628264C71924100 @default.
- W4303628264 hasIssue "10" @default.
- W4303628264 hasLocation W43036282641 @default.
- W4303628264 hasLocation W43036282642 @default.
- W4303628264 hasLocation W43036282643 @default.
- W4303628264 hasOpenAccess W4303628264 @default.
- W4303628264 hasPrimaryLocation W43036282641 @default.
- W4303628264 hasRelatedWork W1972640788 @default.
- W4303628264 hasRelatedWork W2001744830 @default.
- W4303628264 hasRelatedWork W2016144561 @default.
- W4303628264 hasRelatedWork W2046986490 @default.