Matches in SemOpenAlex for { <https://semopenalex.org/work/W4303644920> ?p ?o ?g. }
- W4303644920 endingPage "1637" @default.
- W4303644920 startingPage "1637" @default.
- W4303644920 abstract "Forest biomass measurement or estimation is critical for forest monitoring at the stand scale, but errors among different estimations in stand investigation are unclear. Thus, the Pinus densata natural forest in Shangri-La City, southwestern China, was selected as the research object to investigate the biomass of 84 plots and 100 samples of P. densata. The stand biomass was calculated using five methods: stand biomass growth with age (SBA), stem biomass combined with the biomass expansion factors (SB+BEF), stand volume combined with biomass conversion and expansion factors (SV+BCEF), individual tree biomass combined with stand diameter structure (IB+SDS), and individual tree biomass combined with stand density (IB+SD). The estimation errors of the five methods were then analyzed. The results showed that the suitable methods for estimating stand biomass are SB+BEF, M+BCEF, and IB+SDS. When using these three methods (SB+BEF, SV+BCEF, and IB+SDS) to estimate the biomass of different components, wood biomass estimation using SB+BEF is unsuitable, and root biomass estimation employing the IB+SDS method was not preferred. The SV+BCEF method was better for biomass estimation. Except for the branches, the mean relative error (MRE) of the other components presented minor errors in the estimation, while MRE was lower than other components in the range from −0.11%–28.93%. The SB+BEF was more appealing for branches biomass estimation, and its MRE is only 0.31% lower than SV+BCEF. The stand biomass strongly correlated with BEF, BCEF, stand structure, stand age, and other factors. Hence, the stand biomass growth model system established in this study effectively predicted the stand biomass dynamics and provided a theoretical basis and practical support for accurately estimating forest biomass growth." @default.
- W4303644920 created "2022-10-08" @default.
- W4303644920 creator A5020899933 @default.
- W4303644920 creator A5022256556 @default.
- W4303644920 creator A5034885038 @default.
- W4303644920 creator A5039469209 @default.
- W4303644920 creator A5043031303 @default.
- W4303644920 creator A5055174666 @default.
- W4303644920 date "2022-10-06" @default.
- W4303644920 modified "2023-10-09" @default.
- W4303644920 title "Error Analysis on the Five Stand Biomass Growth Estimation Methods for a Sub-Alpine Natural Pine Forest in Yunnan, Southwestern China" @default.
- W4303644920 cites W1986682104 @default.
- W4303644920 cites W1988327204 @default.
- W4303644920 cites W1993028305 @default.
- W4303644920 cites W2000288244 @default.
- W4303644920 cites W2003269154 @default.
- W4303644920 cites W2003299728 @default.
- W4303644920 cites W2005907532 @default.
- W4303644920 cites W2021474216 @default.
- W4303644920 cites W2022538294 @default.
- W4303644920 cites W2034161083 @default.
- W4303644920 cites W2047744778 @default.
- W4303644920 cites W2047753483 @default.
- W4303644920 cites W2052789121 @default.
- W4303644920 cites W2052811137 @default.
- W4303644920 cites W2056129070 @default.
- W4303644920 cites W2059047271 @default.
- W4303644920 cites W2063021828 @default.
- W4303644920 cites W2067337373 @default.
- W4303644920 cites W2068535473 @default.
- W4303644920 cites W2072087664 @default.
- W4303644920 cites W2085830823 @default.
- W4303644920 cites W2092346261 @default.
- W4303644920 cites W2094876857 @default.
- W4303644920 cites W2109631166 @default.
- W4303644920 cites W2117546886 @default.
- W4303644920 cites W2149060533 @default.
- W4303644920 cites W2150206334 @default.
- W4303644920 cites W2150588208 @default.
- W4303644920 cites W2155236826 @default.
- W4303644920 cites W2162249305 @default.
- W4303644920 cites W2168150266 @default.
- W4303644920 cites W2330946153 @default.
- W4303644920 cites W2545241109 @default.
- W4303644920 cites W2572496340 @default.
- W4303644920 cites W2576879659 @default.
- W4303644920 cites W2757865679 @default.
- W4303644920 cites W2761635614 @default.
- W4303644920 cites W2770798468 @default.
- W4303644920 cites W2891525929 @default.
- W4303644920 cites W2932477389 @default.
- W4303644920 cites W2943424967 @default.
- W4303644920 cites W2945659338 @default.
- W4303644920 cites W2949705843 @default.
- W4303644920 cites W2969228141 @default.
- W4303644920 cites W2995431990 @default.
- W4303644920 cites W3042756131 @default.
- W4303644920 cites W3154012875 @default.
- W4303644920 cites W3156137756 @default.
- W4303644920 cites W4205285916 @default.
- W4303644920 cites W4214521499 @default.
- W4303644920 doi "https://doi.org/10.3390/f13101637" @default.
- W4303644920 hasPublicationYear "2022" @default.
- W4303644920 type Work @default.
- W4303644920 citedByCount "1" @default.
- W4303644920 countsByYear W43036449202023 @default.
- W4303644920 crossrefType "journal-article" @default.
- W4303644920 hasAuthorship W4303644920A5020899933 @default.
- W4303644920 hasAuthorship W4303644920A5022256556 @default.
- W4303644920 hasAuthorship W4303644920A5034885038 @default.
- W4303644920 hasAuthorship W4303644920A5039469209 @default.
- W4303644920 hasAuthorship W4303644920A5043031303 @default.
- W4303644920 hasAuthorship W4303644920A5055174666 @default.
- W4303644920 hasBestOaLocation W43036449201 @default.
- W4303644920 hasConcept C113174947 @default.
- W4303644920 hasConcept C115540264 @default.
- W4303644920 hasConcept C127413603 @default.
- W4303644920 hasConcept C134306372 @default.
- W4303644920 hasConcept C146978453 @default.
- W4303644920 hasConcept C201995342 @default.
- W4303644920 hasConcept C204323151 @default.
- W4303644920 hasConcept C205649164 @default.
- W4303644920 hasConcept C2910048773 @default.
- W4303644920 hasConcept C33923547 @default.
- W4303644920 hasConcept C39432304 @default.
- W4303644920 hasConcept C59822182 @default.
- W4303644920 hasConcept C6557445 @default.
- W4303644920 hasConcept C86803240 @default.
- W4303644920 hasConcept C96250715 @default.
- W4303644920 hasConcept C97137747 @default.
- W4303644920 hasConceptScore W4303644920C113174947 @default.
- W4303644920 hasConceptScore W4303644920C115540264 @default.
- W4303644920 hasConceptScore W4303644920C127413603 @default.
- W4303644920 hasConceptScore W4303644920C134306372 @default.
- W4303644920 hasConceptScore W4303644920C146978453 @default.
- W4303644920 hasConceptScore W4303644920C201995342 @default.
- W4303644920 hasConceptScore W4303644920C204323151 @default.
- W4303644920 hasConceptScore W4303644920C205649164 @default.