Matches in SemOpenAlex for { <https://semopenalex.org/work/W4303710020> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4303710020 endingPage "133" @default.
- W4303710020 startingPage "133" @default.
- W4303710020 abstract "Road maintenance is a key aspect of road safety and resilience. Traffic signs are an important asset of the road network, providing information that enhances safety and driver awareness. This paper presents a method for the recognition and geolocation of vertical traffic signs based on artificial intelligence and the use of a low-cost mobile mapping system. The approach developed includes three steps: First, traffic signals are detected and recognized from imagery using a deep learning architecture with YOLOV3 and ResNet-152. Next, LiDAR point clouds are used to provide metric capabilities and cartographic coordinates. Finally, a WebGIS viewer was developed based on Potree architecture to visualize the results. The experimental results were validated on a regional road in Avila (Spain) demonstrating that the proposed method obtains promising, accurate and reliable results." @default.
- W4303710020 created "2022-10-09" @default.
- W4303710020 creator A5005048529 @default.
- W4303710020 creator A5022378354 @default.
- W4303710020 creator A5039616412 @default.
- W4303710020 creator A5057489067 @default.
- W4303710020 date "2022-10-04" @default.
- W4303710020 modified "2023-10-01" @default.
- W4303710020 title "Automatic Recognition and Geolocation of Vertical Traffic Signs Based on Artificial Intelligence Using a Low-Cost Mapping Mobile System" @default.
- W4303710020 cites W1993022899 @default.
- W4303710020 cites W1998871722 @default.
- W4303710020 cites W2000035714 @default.
- W4303710020 cites W2012742472 @default.
- W4303710020 cites W2045388733 @default.
- W4303710020 cites W2097339925 @default.
- W4303710020 cites W2127741730 @default.
- W4303710020 cites W2167667767 @default.
- W4303710020 cites W2194775991 @default.
- W4303710020 cites W2285948548 @default.
- W4303710020 cites W2312582804 @default.
- W4303710020 cites W2345272516 @default.
- W4303710020 cites W2594203750 @default.
- W4303710020 cites W2737992905 @default.
- W4303710020 cites W2792806930 @default.
- W4303710020 cites W2893333163 @default.
- W4303710020 cites W2909816247 @default.
- W4303710020 cites W2935799698 @default.
- W4303710020 cites W2973342970 @default.
- W4303710020 cites W2996919757 @default.
- W4303710020 cites W3004779205 @default.
- W4303710020 cites W3004860639 @default.
- W4303710020 cites W3020824323 @default.
- W4303710020 cites W3047394361 @default.
- W4303710020 cites W3109760212 @default.
- W4303710020 cites W3124807019 @default.
- W4303710020 cites W3198643537 @default.
- W4303710020 doi "https://doi.org/10.3390/infrastructures7100133" @default.
- W4303710020 hasPublicationYear "2022" @default.
- W4303710020 type Work @default.
- W4303710020 citedByCount "0" @default.
- W4303710020 crossrefType "journal-article" @default.
- W4303710020 hasAuthorship W4303710020A5005048529 @default.
- W4303710020 hasAuthorship W4303710020A5022378354 @default.
- W4303710020 hasAuthorship W4303710020A5039616412 @default.
- W4303710020 hasAuthorship W4303710020A5057489067 @default.
- W4303710020 hasBestOaLocation W43037100201 @default.
- W4303710020 hasConcept C108583219 @default.
- W4303710020 hasConcept C123657996 @default.
- W4303710020 hasConcept C131979681 @default.
- W4303710020 hasConcept C136764020 @default.
- W4303710020 hasConcept C154945302 @default.
- W4303710020 hasConcept C166957645 @default.
- W4303710020 hasConcept C186967261 @default.
- W4303710020 hasConcept C205649164 @default.
- W4303710020 hasConcept C22041718 @default.
- W4303710020 hasConcept C26517878 @default.
- W4303710020 hasConcept C2776821279 @default.
- W4303710020 hasConcept C38652104 @default.
- W4303710020 hasConcept C41008148 @default.
- W4303710020 hasConcept C79403827 @default.
- W4303710020 hasConcept C81363708 @default.
- W4303710020 hasConceptScore W4303710020C108583219 @default.
- W4303710020 hasConceptScore W4303710020C123657996 @default.
- W4303710020 hasConceptScore W4303710020C131979681 @default.
- W4303710020 hasConceptScore W4303710020C136764020 @default.
- W4303710020 hasConceptScore W4303710020C154945302 @default.
- W4303710020 hasConceptScore W4303710020C166957645 @default.
- W4303710020 hasConceptScore W4303710020C186967261 @default.
- W4303710020 hasConceptScore W4303710020C205649164 @default.
- W4303710020 hasConceptScore W4303710020C22041718 @default.
- W4303710020 hasConceptScore W4303710020C26517878 @default.
- W4303710020 hasConceptScore W4303710020C2776821279 @default.
- W4303710020 hasConceptScore W4303710020C38652104 @default.
- W4303710020 hasConceptScore W4303710020C41008148 @default.
- W4303710020 hasConceptScore W4303710020C79403827 @default.
- W4303710020 hasConceptScore W4303710020C81363708 @default.
- W4303710020 hasFunder F4320321043 @default.
- W4303710020 hasFunder F4320322930 @default.
- W4303710020 hasIssue "10" @default.
- W4303710020 hasLocation W43037100201 @default.
- W4303710020 hasOpenAccess W4303710020 @default.
- W4303710020 hasPrimaryLocation W43037100201 @default.
- W4303710020 hasRelatedWork W2731899572 @default.
- W4303710020 hasRelatedWork W2999805992 @default.
- W4303710020 hasRelatedWork W3011074480 @default.
- W4303710020 hasRelatedWork W3116150086 @default.
- W4303710020 hasRelatedWork W3133861977 @default.
- W4303710020 hasRelatedWork W3192840557 @default.
- W4303710020 hasRelatedWork W4200173597 @default.
- W4303710020 hasRelatedWork W4291897433 @default.
- W4303710020 hasRelatedWork W4312417841 @default.
- W4303710020 hasRelatedWork W4321369474 @default.
- W4303710020 hasVolume "7" @default.
- W4303710020 isParatext "false" @default.
- W4303710020 isRetracted "false" @default.
- W4303710020 workType "article" @default.