Matches in SemOpenAlex for { <https://semopenalex.org/work/W4303946517> ?p ?o ?g. }
- W4303946517 endingPage "986" @default.
- W4303946517 startingPage "972" @default.
- W4303946517 abstract "The rapid increase in the integration of renewable energy sources into the electrical grid is posing new challenges for the dynamic responses due to the global inertia reduction. In this regard, the impact on frequency stability of such reduction and the potential support from wind power have been investigated lately. However, it is well-known that the variability of wind power and its reduced inertia may not be enough to handle the power unbalance. Energy storage systems (e.g., batteries) may provide the required additional flexibility to ensure proper response. In this paper, an analysis of how the different control loops for frequency support on wind power and batteries interact and perform is presented. To gain insights from the different impacts, a sensitivity analysis comparison for frequency regulation through (i) inertia and droop control of a variable speed wind turbine and (ii) battery is performed. The analysis was carried out through simulations using the well-known 4 generator 2-area model adapted to include a wind farm. From a battery perspective, its ramping capabilities were varied to provide frequency regulation. The paper shows how, depending on the control parameters and battery size, the frequency response may even become unstable due to interactions of the various pieces of technology. Thus, it shows that coordinated actions, control optimization and grid status among different actors on the grid (as battery and wind) is required for stable operation." @default.
- W4303946517 created "2022-10-10" @default.
- W4303946517 creator A5014544118 @default.
- W4303946517 creator A5040211089 @default.
- W4303946517 creator A5044502946 @default.
- W4303946517 date "2022-10-09" @default.
- W4303946517 modified "2023-10-17" @default.
- W4303946517 title "Impact of Battery Energy System Integration in Frequency Control of an Electrical Grid with Wind Power" @default.
- W4303946517 cites W1967608753 @default.
- W4303946517 cites W1974911053 @default.
- W4303946517 cites W2005207495 @default.
- W4303946517 cites W2008306618 @default.
- W4303946517 cites W2009775084 @default.
- W4303946517 cites W2012854055 @default.
- W4303946517 cites W2017428530 @default.
- W4303946517 cites W2019878443 @default.
- W4303946517 cites W2044811949 @default.
- W4303946517 cites W2049045141 @default.
- W4303946517 cites W2049478309 @default.
- W4303946517 cites W2063866856 @default.
- W4303946517 cites W2076450057 @default.
- W4303946517 cites W2089340434 @default.
- W4303946517 cites W2096286717 @default.
- W4303946517 cites W2103943240 @default.
- W4303946517 cites W2104770182 @default.
- W4303946517 cites W2105643327 @default.
- W4303946517 cites W2118972853 @default.
- W4303946517 cites W2123108685 @default.
- W4303946517 cites W2126353214 @default.
- W4303946517 cites W2127741718 @default.
- W4303946517 cites W2168157952 @default.
- W4303946517 cites W2170833956 @default.
- W4303946517 cites W2281368744 @default.
- W4303946517 cites W2285029996 @default.
- W4303946517 cites W2534887834 @default.
- W4303946517 cites W2553566779 @default.
- W4303946517 cites W2562255010 @default.
- W4303946517 cites W2587686993 @default.
- W4303946517 cites W2626201656 @default.
- W4303946517 cites W2758263901 @default.
- W4303946517 cites W2760857324 @default.
- W4303946517 cites W2773957237 @default.
- W4303946517 cites W2775694063 @default.
- W4303946517 cites W2782065654 @default.
- W4303946517 cites W2783250415 @default.
- W4303946517 cites W2792068499 @default.
- W4303946517 cites W2805661506 @default.
- W4303946517 cites W2888142130 @default.
- W4303946517 cites W2898279956 @default.
- W4303946517 cites W2907369614 @default.
- W4303946517 cites W2972484852 @default.
- W4303946517 cites W2982792507 @default.
- W4303946517 cites W2996731724 @default.
- W4303946517 cites W3007533444 @default.
- W4303946517 cites W3041418727 @default.
- W4303946517 cites W3127228368 @default.
- W4303946517 cites W3128869116 @default.
- W4303946517 cites W3207343464 @default.
- W4303946517 doi "https://doi.org/10.3390/cleantechnol4040060" @default.
- W4303946517 hasPublicationYear "2022" @default.
- W4303946517 type Work @default.
- W4303946517 citedByCount "3" @default.
- W4303946517 countsByYear W43039465172023 @default.
- W4303946517 crossrefType "journal-article" @default.
- W4303946517 hasAuthorship W4303946517A5014544118 @default.
- W4303946517 hasAuthorship W4303946517A5040211089 @default.
- W4303946517 hasAuthorship W4303946517A5044502946 @default.
- W4303946517 hasBestOaLocation W43039465171 @default.
- W4303946517 hasConcept C105795698 @default.
- W4303946517 hasConcept C110407247 @default.
- W4303946517 hasConcept C119599485 @default.
- W4303946517 hasConcept C121332964 @default.
- W4303946517 hasConcept C123919525 @default.
- W4303946517 hasConcept C127413603 @default.
- W4303946517 hasConcept C163258240 @default.
- W4303946517 hasConcept C165801399 @default.
- W4303946517 hasConcept C171146098 @default.
- W4303946517 hasConcept C187691185 @default.
- W4303946517 hasConcept C188573790 @default.
- W4303946517 hasConcept C201320609 @default.
- W4303946517 hasConcept C21905445 @default.
- W4303946517 hasConcept C2524010 @default.
- W4303946517 hasConcept C25915539 @default.
- W4303946517 hasConcept C2776336204 @default.
- W4303946517 hasConcept C2780598303 @default.
- W4303946517 hasConcept C33923547 @default.
- W4303946517 hasConcept C40760162 @default.
- W4303946517 hasConcept C41008148 @default.
- W4303946517 hasConcept C45872418 @default.
- W4303946517 hasConcept C49324399 @default.
- W4303946517 hasConcept C555008776 @default.
- W4303946517 hasConcept C62520636 @default.
- W4303946517 hasConcept C73916439 @default.
- W4303946517 hasConcept C74650414 @default.
- W4303946517 hasConcept C78600449 @default.
- W4303946517 hasConcept C8590192 @default.
- W4303946517 hasConcept C89227174 @default.
- W4303946517 hasConceptScore W4303946517C105795698 @default.