Matches in SemOpenAlex for { <https://semopenalex.org/work/W4303980528> ?p ?o ?g. }
- W4303980528 endingPage "7432" @default.
- W4303980528 startingPage "7432" @default.
- W4303980528 abstract "Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, and hip joint angles, torques, and powers, as well as ground reaction forces (GRF). ML was able to classify those with and without PAD using Neural Networks or Random Forest algorithms with 89% accuracy (0.64 Matthew’s Correlation Coefficient) using all laboratory-based gait variables. Moreover, models using only GRF variables provided up to 87% accuracy (0.64 Matthew’s Correlation Coefficient). These results indicate that ML models can classify those with and without PAD using gait signatures with acceptable performance. Results also show that an ML gait signature model that uses GRF features delivers the most informative data for PAD classification." @default.
- W4303980528 created "2022-10-10" @default.
- W4303980528 creator A5007339984 @default.
- W4303980528 creator A5013564331 @default.
- W4303980528 creator A5020484332 @default.
- W4303980528 creator A5036105970 @default.
- W4303980528 creator A5043338129 @default.
- W4303980528 creator A5060306712 @default.
- W4303980528 creator A5077155255 @default.
- W4303980528 creator A5087383627 @default.
- W4303980528 creator A5089348924 @default.
- W4303980528 date "2022-09-30" @default.
- W4303980528 modified "2023-10-14" @default.
- W4303980528 title "Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data" @default.
- W4303980528 cites W1526205344 @default.
- W4303980528 cites W1969046495 @default.
- W4303980528 cites W1982708292 @default.
- W4303980528 cites W2012905414 @default.
- W4303980528 cites W2016074732 @default.
- W4303980528 cites W2025371391 @default.
- W4303980528 cites W2028012355 @default.
- W4303980528 cites W2028277831 @default.
- W4303980528 cites W2033833679 @default.
- W4303980528 cites W2040870580 @default.
- W4303980528 cites W2048047342 @default.
- W4303980528 cites W2048489440 @default.
- W4303980528 cites W2051725773 @default.
- W4303980528 cites W2053488495 @default.
- W4303980528 cites W2059871922 @default.
- W4303980528 cites W2074756415 @default.
- W4303980528 cites W2089178475 @default.
- W4303980528 cites W2089357251 @default.
- W4303980528 cites W2095219849 @default.
- W4303980528 cites W2110101054 @default.
- W4303980528 cites W2110227554 @default.
- W4303980528 cites W2118839213 @default.
- W4303980528 cites W2124903172 @default.
- W4303980528 cites W2131088718 @default.
- W4303980528 cites W2133124389 @default.
- W4303980528 cites W2143042489 @default.
- W4303980528 cites W2144985796 @default.
- W4303980528 cites W2151182485 @default.
- W4303980528 cites W2168284007 @default.
- W4303980528 cites W2264788946 @default.
- W4303980528 cites W2344173423 @default.
- W4303980528 cites W2411394600 @default.
- W4303980528 cites W2739915297 @default.
- W4303980528 cites W2788299727 @default.
- W4303980528 cites W2792300474 @default.
- W4303980528 cites W2886368623 @default.
- W4303980528 cites W2902161100 @default.
- W4303980528 cites W2912582129 @default.
- W4303980528 cites W2919115771 @default.
- W4303980528 cites W2922395239 @default.
- W4303980528 cites W2947784197 @default.
- W4303980528 cites W2952505933 @default.
- W4303980528 cites W2959853492 @default.
- W4303980528 cites W2963518130 @default.
- W4303980528 cites W2972338651 @default.
- W4303980528 cites W2972943572 @default.
- W4303980528 cites W2974656060 @default.
- W4303980528 cites W2982896973 @default.
- W4303980528 cites W3036669833 @default.
- W4303980528 cites W3041179787 @default.
- W4303980528 cites W3044409733 @default.
- W4303980528 cites W3044909767 @default.
- W4303980528 cites W3120795911 @default.
- W4303980528 cites W3126232929 @default.
- W4303980528 cites W3126800207 @default.
- W4303980528 cites W3170220376 @default.
- W4303980528 cites W4236938366 @default.
- W4303980528 doi "https://doi.org/10.3390/s22197432" @default.
- W4303980528 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36236533" @default.
- W4303980528 hasPublicationYear "2022" @default.
- W4303980528 type Work @default.
- W4303980528 citedByCount "1" @default.
- W4303980528 countsByYear W43039805282023 @default.
- W4303980528 crossrefType "journal-article" @default.
- W4303980528 hasAuthorship W4303980528A5007339984 @default.
- W4303980528 hasAuthorship W4303980528A5013564331 @default.
- W4303980528 hasAuthorship W4303980528A5020484332 @default.
- W4303980528 hasAuthorship W4303980528A5036105970 @default.
- W4303980528 hasAuthorship W4303980528A5043338129 @default.
- W4303980528 hasAuthorship W4303980528A5060306712 @default.
- W4303980528 hasAuthorship W4303980528A5077155255 @default.
- W4303980528 hasAuthorship W4303980528A5087383627 @default.
- W4303980528 hasAuthorship W4303980528A5089348924 @default.
- W4303980528 hasBestOaLocation W43039805281 @default.
- W4303980528 hasConcept C105702510 @default.
- W4303980528 hasConcept C119857082 @default.
- W4303980528 hasConcept C121332964 @default.
- W4303980528 hasConcept C141071460 @default.
- W4303980528 hasConcept C151800584 @default.
- W4303980528 hasConcept C153180895 @default.
- W4303980528 hasConcept C154945302 @default.
- W4303980528 hasConcept C169258074 @default.
- W4303980528 hasConcept C170700871 @default.
- W4303980528 hasConcept C173906292 @default.